[email protected]

工程学研究

Journal of Engineering Research

您当前位置:首页 > 精选文章

Journal of Engineering Research. 2025; 4: (5) ; 10.12208/j.jer.20250243 .

Hardware optimization and performance evaluation of high-performance computing clusters
高性能计算集群的硬件优化与性能评估

作者: 石锐 *

兴业银行 福建福州

*通讯作者: 石锐,单位:兴业银行 福建福州;

引用本文: 石锐 高性能计算集群的硬件优化与性能评估[J]. 工程学研究, 2025; 4: (5) : 143-145.
Published: 2025/5/27 13:55:59

摘要

高性能计算集群的硬件优化是提升计算效率和资源利用率的关键手段。本文系统分析了集群硬件架构中的瓶颈因素,提出基于多层次缓存优化、网络拓扑调整和负载均衡策略的优化方案。通过实际性能评估,验证了优化措施在降低通信延迟、提升计算吞吐量和提高能效比方面的显著效果。研究结果表明,合理的硬件优化不仅提升了集群整体性能,还为大规模计算任务提供了有力支撑,推动了高性能计算系统的持续发展。本文的探索为相关领域的硬件设计和系统调优提供了理论依据和实践指导。

关键词: 高性能计算集群;硬件优化;性能评估;缓存优化;网络拓扑

Abstract

Hardware optimization of high-performance computing clusters is a key means to improve computational efficiency and resource utilization. This paper systematically analyzes the bottleneck factors in cluster hardware architectures and proposes an optimization scheme based on multi-level cache optimization, network topology adjustment, and load balancing strategies. Through practical performance evaluation, the significant effects of the optimization measures in reducing communication latency, enhancing computational throughput, and improving energy efficiency ratio are verified. The research results show that reasonable hardware optimization not only enhances the overall performance of the cluster but also provides a strong support for large-scale computational tasks, promoting the continuous development of high-performance computing systems. The exploration in this paper provides a theoretical basis and practical guidance for hardware design and system tuning in related fields.

Key words: High-performance computing cluster; Hardware optimization; Performance evaluation; Cache optimization; Network topology

参考文献 References

[1] 杨敏,何芸,许涛,等.高性能GPU计算集群应用体系建设[J].信息系统工程,2025,(03):102-105.

[2] 董爱强,胡学勇,于兴江,等.超大规模计算平台-感知混合容器集群的高性能计算作业调度[J].自动化与仪器仪表,2024,(10):60-64.

[3] 徐基雅.基于空间位置的高性能计算集群能耗感知调度技术研究[D].齐鲁工业大学,2024.

[4] 娄燕涛.面向高性能计算集群的用户作业能耗预测算法研究[D].齐鲁工业大学,2024.

[5] 北京市环保局高性能运算计算集群系统模式集成预报技术开发[J].中国科技信息,2024,(07):1.

[6] 高金金,李潞洋,薛·俊杰.融合云桌面资源的高性能计算集群方案研究[J].软件,2024,45(03):13-17.

[7] 徐海啸,吴旗,于洪梅,等.地球系统模型(CESM)移植到ARM高性能计算集群的实证研究[J].实验技术与管理,2023,40(11):40-45+70.

[8] 杨宏辉,马银萍,李若淼,等.高性能计算集群安全架构研究与部署[C]//中国计算机用户协会网络应用分会.中国计算机用户协会网络应用分会2023年第二十七届网络新技术与应用年会论文集.北京大学计算中心;,2023: 244-247.