[email protected]

工程学研究

Journal of Engineering Research

您当前位置:首页 > 精选文章

Journal of Engineering Research. 2025; 4: (5) ; 10.12208/j.jer.20250223 .

Optimization of automatic PCB defect detection algorithm based on machine learning
基于机器学习的PCB缺陷自动检测算法优化

作者: 王龙 *

北京移动系统集成有限公司 北京

*通讯作者: 王龙,单位:北京移动系统集成有限公司 北京;

引用本文: 王龙 基于机器学习的PCB缺陷自动检测算法优化[J]. 工程学研究, 2025; 4: (5) : 83-85.
Published: 2025/5/24 12:15:06

摘要

随着电子产品的日益复杂化,印刷电路板(PCB)的质量控制变得愈加重要。传统的人工检测方法不仅费时费力,而且容易出现误差。基于机器学习的PCB缺陷自动检测算法逐渐成为解决这一问题的有效途径。本文针对PCB缺陷检测中的难点,提出了一种基于深度学习的自动化检测算法。通过对PCB图像数据的深度特征提取和分类模型优化,显著提高了检测的准确性和效率。实验结果表明,该算法在实际应用中具有较强的鲁棒性,并能够有效减少人工干预。本文的研究不仅为PCB的自动检测提供了一种可行方案,也为其他工业自动化检测问题提供了借鉴意义。

关键词: PCB缺陷检测;机器学习;深度学习;图像识别;自动化

Abstract

With the increasing complexity of electronic products, the quality control of printed circuit boards (PCBs) has become more and more important. Traditional manual detection methods are not only time-consuming and labor-intensive, but also prone to errors. The automatic PCB defect detection algorithm based on machine learning has gradually become an effective way to solve this problem. Aiming at the difficulties in PCB defect detection, this paper proposes an automated detection algorithm based on deep learning. By extracting the deep features of PCB image data and optimizing the classification model, the accuracy and efficiency of detection are significantly improved. The experimental results show that the algorithm has strong robustness in practical applications and can effectively reduce manual intervention. The research of this paper not only provides a feasible solution for the automatic detection of PCBs, but also provides reference for other industrial automated detection problems.

Key words: PCB defect detection; Machine learning; Deep learning; Image recognition; Automation

参考文献 References

[1] 芦雅婷,贾翔宇,田雨绯.企业内控重大缺陷的特征分析与识别——基于企业画像和机器学习的证据[J/OL].财会月刊,1-7[2025-05-09].

[2] 何锦雄,刘海涛,吴凯.电力设备缺陷自诊断与运行状态预测的机器学习与相关性分析集成方法[C]//广东省电机工程学会.2025年岭南电力论坛论文集.东电网有限责任公司茂名供电局;,2025:60-67.D

[3] 喻皓,张莹,李倩,等.基于机器学习的软件缺陷预测研究[J].重庆大学学报,2025,48(02):10-21.

[4] 张阳程,江五贵,邹苗,等.基于实验和仿真联合驱动的选区激光熔化Ti-6Al-4V熔池缺陷分类的机器学习预测[J/OL].应用力学学报,1-12[2025-05-09].

[5] 李宇轩,曾庆涛,陆利坤.基于人工智能的PCB表面缺陷检测研究综述[J].北京印刷学院学报,2024,32(12):62-72.

[6] 郭渊,许伟佳,董振标.基于深度学习的PCB表面缺陷检测研究进展[J].机床与液压,2024,52(23):188-198.

[7] 张延磊.基于机器学习的通信软件缺陷预测研究[J].智能物联技术,2024,56(06):51-54.

[8] 段良华,杜鹏.基于机器学习的轮胎缺陷检测平台设计与应用研究[J].中国轮胎资源综合利用,2024,(11):57-59.