[email protected]

工程学研究

Journal of Engineering Research

您当前位置:首页 > 精选文章

Journal of Engineering Research. 2025; 4: (5) ; 10.12208/j.jer.20250213 .

Improvement scheme of blade aerodynamic shape in low wind speed areas of onshore wind power and verification of power generation gain
陆上风电低风速区域叶片气动外形改进方案与发电量增益验证

作者: 周虹 *

新疆龙源新能源有限公司 新疆乌鲁木齐

*通讯作者: 周虹,单位:新疆龙源新能源有限公司 新疆乌鲁木齐;

引用本文: 周虹 陆上风电低风速区域叶片气动外形改进方案与发电量增益验证[J]. 工程学研究, 2025; 4: (5) : 53-55.
Published: 2025/5/24 11:25:34

摘要

随着陆上风电在低风速区域的广泛应用,传统风电机组的叶片气动外形在低风速条件下的效率已不能满足发电需求。本研究提出了一种叶片气动外形改进方案,通过优化叶片的形状和调整气动性能,以提高低风速下的发电效率。针对低风速区域风电机组的工作环境,本文通过计算流体力学(CFD)模拟与风电机组实际工作数据分析,验证了改进后的叶片设计在低风速环境中的增益效果。改进后的叶片气动外形能够有效提高风电机组在低风速下的发电量,并提升其整体经济效益。本研究为风电行业在低风速区域的优化设计提供了新的思路和方法。

关键词: 陆上风电;低风速;叶片气动外形;发电量增益;CFD模拟

Abstract

With the widespread application of onshore wind power in low wind speed areas, the efficiency of the blade aerodynamic shape of traditional wind turbines under low wind speed conditions can no longer meet the power generation requirements. This study proposes an improvement scheme for the blade aerodynamic shape. By optimizing the blade shape and adjusting the aerodynamic performance, the power generation efficiency under low wind speeds is improved. Aiming at the working environment of wind turbines in low wind speed areas, this paper verifies the gain effect of the improved blade design in a low wind speed environment through computational fluid dynamics (CFD) simulation and analysis of the actual working data of wind turbines. The improved blade aerodynamic shape can effectively increase the power generation of wind turbines under low wind speeds and enhance their overall economic benefits. This study provides new ideas and methods for the optimized design of the wind power industry in low wind speed areas.

Key words: Onshore wind power; Low wind speed; Blade aerodynamic shape; Power generation gain; CFD simulation

参考文献 References

[1] 曾懿.陆上风电场风机基础裂缝成因及加固预防措施[J/OL].红水河,1-6[2025-05-09].

[2] 彭昀月,罗永梅,靳彤,等.减缓陆上集中式光伏及风电电场生态影响的早期选址规划方法与工具[J].生物多样性, 2025, 33(01):159-168.

[3] 张寿泉.陆上风电设备安全性评估与故障诊断技术研究[J].电力设备管理,2024,(24):240-242.

[4] 周波,方磊,钱亦鑫.风电项目陆上集控中心工程安全管控实践[J].中国电力企业管理,2024,(36):38-39.

[5] 孙健.陆上风电机组钢-混凝土混合塔架安装技术与质量控制[J].建设监理,2024,(10):90-94.

[6] 徐泽文,陈真涛,周鑫,等.低风速工况下张力腿式浮式风机运动特性分析[J].船舶物资与市场,2024,32(09):71-75.

[7] 桑文刚,张国威,王田雨,等.热带典型海洋区域CYGNSS风速产品质量评估[J].测绘通报,2024,(09):32-37.

[8] 耿明丰.风电机组全风速段多目标发电优化控制研究[J].电气技术与经济,2024,(09):68-70+74