Journal of Engineering Research
Journal of Engineering Research. 2025; 4: (5) ; 10.12208/j.jer.20250208 .
总浏览量: 116
大庆油田装备制造集团石油专用设备有限公司 黑龙江大庆
*通讯作者: 侯宇迪,单位:大庆油田装备制造集团石油专用设备有限公司 黑龙江大庆;
在全球能源结构加速重构与“双碳”目标刚性约束下,油田行业作为高碳排重点领域,其低碳转型已从“战略选项”升级为“生存必答题”。新能源技术在油田站场的规模化应用,既是破解传统油气生产高能耗困局的关键抓手,也是行业融入全球绿色能源体系的核心路径。然而,油田站场多布局于沙漠、高寒、海洋等极端环境——如中东沙漠油田夏季地表温度超60℃、西伯利亚高寒地区冬季低温达-50℃、海上油田年盐雾腐蚀时长超3000小时,这些场景对光伏组件、风电设备、储能系统等新能源设施的材料耐受性、系统稳定性与运维可靠性提出了远超常规环境的严苛要求;在此背景下,开展极端环境下油田站场新能源设备适应性研究具有鲜明的战略意义:对行业而言,通过材料革新与系统优化提升设备环境耐受能力,可将新能源在极端场景的渗透率从当前不足15%提升至40%以上,为油田构建多能互补的低碳供能体系奠定基础。
Under the accelerating global energy restructuring and the rigid constraints of the "dual-carbon" goals, the oilfield industry, as a key high-carbon emission sector, has seen its low-carbon transition evolve from a "strategic option" to an "imperative for survival." The large-scale application of new energy technologies in oilfield facilities serves both as a critical solution to address the high energy consumption challenges in traditional oil and gas production and as a core pathway for the industry to integrate into the global green energy system. However, oilfield facilities are predominantly located in extreme environments such as deserts, frigid zones, and oceans. For instance, surface temperatures in Middle Eastern desert oilfields exceed 60°C in summer, winter temperatures in Siberian permafrost regions drop to -50°C, and offshore oilfields endure over 3,000 hours of annual salt mist corrosion. These conditions impose far more stringent requirements on the material durability, system stability, and operational reliability of new energy installations—including photovoltaic modules, wind power equipment, and energy storage systems—than conventional environments. In this context, research on the adaptability of new energy equipment in extreme oilfield environments carries profound strategic significance: For the industry, enhancing equipment resilience through material innovation and system optimization could increase the adoption rate of new energy in extreme scenarios from the current less than 15% to over 40%, laying the foundation for building a multi-energy complementary low-carbon energy supply system in oilfields.
[1] 赵书琪,刘勇,徐建军,等.考虑共享储能的孤岛油田微网群协同调度策略[J/OL].南方电网技术,1-14[2025-05-16].http://kns.cnki.net/kcms/detail/44.1643.TK.20250422.0650.010.html.
[2] 孙徽.油田井站新能源技术的应用与发展分析[J].中国石油和化工标准与质量,2025,45(06):178-180.
[3] 杨静丽,曾丽.老油田追风逐日“碳”新路[J].班组天地,2025,(03):80-81.
[4] 王石.S油田地面系统节能管理实践[J].油气田地面工程,2025,44(03):65-72.
[5] 焦玉娟,徐莉萍.青海油田:勾勒雪域高原生态大美画卷[J].国土绿化,2025,(02):28-29.
[6] 魏澈,苏开元,邱银锋,等.风电为主体的海上油田群电力系统构网方式初探[J].电网与清洁能源,2025,41(02): 147-154.
[7] 彭程,赵雪峰,邓炜瀚,等.基于源荷不确定性的油田综合能源系统优化调度方法[J].东北石油大学学报,2025, 49(01): 101-116+12.
[8] 孙永壮.强化改革赋能激发老油田高质量发展动力活力[J].中国石化,2025,(02):15-17.