Journal of Electrical Engineering and Automation
Journal of Electrical Engineering and Automation. 2025; 4: (3) ; 10.12208/j.jeea.20250096 .
总浏览量: 74
国网四川省电力公司古蔺县供电分公司 四川泸州
*通讯作者: 胡猛,单位:国网四川省电力公司古蔺县供电分公司 四川泸州;
本文研究了基于深度学习的电力系统故障诊断与自愈控制技术,提出了一种智能化的解决方案来应对电力系统中日益复杂的故障情形。通过深度学习模型,能够从海量的电力系统数据中自动提取特征,快速准确地识别故障类型与位置,并结合诊断结果实现自愈控制,如自动切换负荷、调整电网拓扑结构等。实验表明,所提出的故障诊断与自愈控制方法相比传统方法在准确性、实时性和自动化水平上具有显著优势,能够有效提升电力系统的稳定性与智能化程度,为智能电网的建设提供了坚实的技术支持。
This paper studies fault diagnosis and self-healing control technologies for power systems based on deep learning, and proposes an intelligent solution to address the increasingly complex fault scenarios in power systems. Through deep learning models, it is possible to automatically extract features from massive power system data, quickly and accurately identify fault types and locations, and implement self-healing control based on diagnostic results, such as automatic load switching and adjustment of the power grid topology. Experiments show that the proposed fault diagnosis and self-healing control method significantly outperforms traditional methods in terms of accuracy, real-time performance, and automation level. It can effectively enhance the stability and intelligence of power systems, providing a solid technical support for the construction of smart grids.
[1] 郭小强,王巧珍,陈志毅,等.基于深度学习的电力系统主站负荷控制算法研究[J].电气技术与经济,2025,(02):22-24.
[2] 高琴,徐光虎,夏尚学,等.基于深度强化学习的电力系统紧急切机稳控策略生成方法[J].电力科学与技术学报, 2025, 40(01):39-46.
[3] 高翔宇.基于深度学习的电力系统故障检测与智能诊断技术研究[J].电气技术与经济,2025,(01):350-352.
[4] 焦昊,赵佳伟,韦磊,等.基于深度迁移学习的电力系统暂态状态估计[J].电力建设,2025,46(01):97-106.
[5] 朱美晔.基于深度学习的电力系统低频振荡模式评估[J].电气应用,2024,43(12):24-31.
[6] 马保慧,吴沂飞,赵利民,等.深度学习模型下电力系统检测与保护的预测技术分析[J].电气传动自动化,2024, 46(06):36-40.
[7] 任智飞.基于深度学习的电力系统调度研究[J].电气技术与经济,2023,(06):60-63.
[8] 胡博文.基于深度学习的电力系统暂态稳定预测研究[D].贵州大学,2023.