[email protected]

电气工程与自动化

Journal of Electrical Engineering and Automation

您当前位置:首页 > 精选文章

Journal of Electrical Engineering and Automation. 2025; 4: (3) ; 10.12208/j.jeea.20250091 .

Defect detection system for power transmission and transformation equipment using infrared and visible light image fusion
输变电设备红外图像与可见光融合的缺陷检测系统

作者: 戴学文 *

酒泉深能北控能源开发有限公司 甘肃酒泉

*通讯作者: 戴学文,单位:酒泉深能北控能源开发有限公司 甘肃酒泉;

引用本文: 戴学文 输变电设备红外图像与可见光融合的缺陷检测系统[J]. 电气工程与自动化, 2025; 4: (3) : 105-107.
Published: 2025/3/19 11:50:57

摘要

先进封装技术在集成电路制造中扮演着越来越重要的角色,尤其在突破摩尔定律瓶颈方面展现出显著优势。围绕红外与可见光图像融合、缺陷识别中的融合算法以及多源图像协同检测等关键技术路径展开分析,揭示了当前技术的发展现状与核心挑战。研究显示,深度学习、多模态数据融合与高效算法设计是提升检测精度与系统智能化水平的关键。整体来看,相关技术正朝着高集成度、低延迟与强泛化能力方向演进,为多个高技术领域提供坚实支撑。

关键词: 输变电设备;红外图像;可见光图像;图像融合;缺陷检测

Abstract

Advanced packaging technology plays an increasingly important role in integrated circuit manufacturing, especially in breaking through the limitations of Moore's Law. By analyzing key technical paths such as infrared and visible light image fusion, fusion algorithms in defect recognition, and multi-source image collaborative detection, this study reveals the current development status and core challenges of these technologies. Research indicates that deep learning, multi-modal data fusion, and efficient algorithm design are crucial for improving detection accuracy and system intelligence. Overall, related technologies are evolving toward high integration, low latency, and strong generalization capabilities, providing solid support for multiple high-tech fields.

Key words: Power transmission and transformation equipment; Infrared image; Visible light image; Image fusion; Defect detection

参考文献 References

[1] 白晓静,徐佳伟,皮宇啸,等.融合可见光与红外图像的光伏阵列缺陷检测[J].太阳能学报,2025,46(04):313-321.

[2] 付启银.基于视觉传达技术的可见光与红外图像融合方法[J].激光杂志,2025,46(04):128-133.

[3] 梁思远,豆飞,谢莎婷,等.基于改进YOLOv5的可见光和红外图像特征级融合检测算法研究[J].计算机应用与软件,2025,42(04):257-262.

[4] 黄政之,厉小润,张天文.基于可见光与红外图像的光伏阵列组串热斑检测方法[J].太阳能学报,2025,46(03): 454-460.

[5] 石丽芬,张鹏,景亚蔓,等.改进CycleGAN实现可见光红外图像的迁移(特邀)[J].红外与激光工程,2025,54(03): 334-347.

[6] 李振伟,施文灶,付强,等.基于多模态传感器的近红外与可见光图像自适应融合模型[J].现代信息科技,2024,8 (24): 163-170.

[7] 郝昱权.基于NSST与深度学习的红外图像与可见光图像融合算法[J].河北软件职业技术学院学报,2024,26(04): 12-17.

[8] 黄志鸿,颜星雨,陶岩,等.基于多模态图像信息的配电网部件定位方法[J].湖南电力,2024,44(06):83-89.