[email protected]

电气工程与自动化

Journal of Electrical Engineering and Automation

您当前位置:首页 > 精选文章

Journal of Electrical Engineering and Automation. 2025; 4: (3) ; 10.12208/j.jeea.20250085 .

Research on energy management and optimal scheduling of microgrids based on deep reinforcement learning
基于深度强化学习的微电网能量管理与优化调度研究

作者: 耿雪峰 *

沙特国际电力和水务公司 上海

*通讯作者: 耿雪峰,单位:沙特国际电力和水务公司 上海;

引用本文: 耿雪峰 基于深度强化学习的微电网能量管理与优化调度研究[J]. 电气工程与自动化, 2025; 4: (3) : 83-85.
Published: 2025/3/19 11:20:38

摘要

微电网在能源领域的日益重要,如何实现高效的能量管理与优化调度成为了研究的热点。深度强化学习(DRL)作为一种先进的人工智能技术,在智能控制和决策领域表现出显著优势。本文基于深度强化学习算法,提出了一种新的微电网能量管理与优化调度方案,旨在提高微电网运行的经济性和稳定性。通过建立微电网系统模型,并应用深度强化学习算法进行在线优化调度,能够有效平衡各能源源之间的负荷调度,降低能源损失。实验结果验证了该方案的可行性和优越性,为微电网的智能化管理提供了有力支持。

关键词: 深度强化学习;微电网;能量管理;优化调度;智能控制

Abstract

Microgrids have become increasingly important in the energy field, and how to achieve efficient energy management and optimal scheduling has become a research hotspot. As an advanced artificial intelligence technology, Deep Reinforcement Learning (DRL) has demonstrated significant advantages in the fields of intelligent control and decision-making. Based on the deep reinforcement learning algorithm, this paper proposes a new energy management and optimal scheduling scheme for microgrids, aiming to improve the economic efficiency and stability of microgrid operation. By establishing a microgrid system model and applying the deep reinforcement learning algorithm for online optimal scheduling, it is possible to effectively balance the load scheduling among various energy sources and reduce energy losses. The experimental results verify the feasibility and superiority of this scheme, providing strong support for the intelligent management of microgrids.

Key words: Deep reinforcement learning; Microgrid; Energy management; Optimal scheduling; Intelligent control

参考文献 References

[1] 白渊铭,魏艳龙.基于深度学习与光流算法的工业机器人异常姿态检测方法[J].山西电子技术,2025,(02):35-37+48.

[2] 章海峰,高瞳.基于深度学习的工业自动化控制DCS系统维护方法[J].自动化应用,2025,66(06):12-14.

[3] 莫丽娟,张梦榛.基于深度强化学习的工业物联网路由优化方法[J].物联网技术,2025,15(02):82-84.

[4] 沈琛.基于深度学习的工业机器人装配路径规划方法[J].今日制造与升级,2024,(12):85-88.

[5] 薛雨,姚金明,姜怀龙,等.基于深度学习和多源GIS数据的工业用地调查更新机制研究与应用[J].智能城市,2024, 10(12):85-88.

[6] 赵梦逸.基于深度学习的工业外观检测通用方法研究[J].工业控制计算机,2024,37(12):73-75.

[7] 吕张成,张建业,陈哲钥,等.基于深度学习的工业零件识别与抓取实时检测算法[J].机床与液压,2023,51(24):33-38.

[8] 石兰娟.基于深度学习的工业制品表面缺陷检测算法研究[D].杭州师范大学,2023.