[email protected]

科学发展研究

Scientific Development Research

您当前位置:首页 > 精选文章

Scientific Development Research . 2025; 5: (2) ; 10.12208/j.sdr.20250050 .

Design and application of energy-fed electronic load and grid-connected scheme
馈能式电子负载及并网方案的设计与应用

作者: 彭健 *, 周皓

北京航化节能环保技术有限公司 北京

*通讯作者: 彭健,单位:北京航化节能环保技术有限公司 北京;

引用本文: 彭健, 周皓 馈能式电子负载及并网方案的设计与应用[J]. 科学发展研究, 2025; 5: (2) : 70-75.
Published: 2025/6/20 10:45:31

摘要

本文设计并实现了一种可编程多通道馈能式电子负载及并网方案,旨在解决传统电子负载测试过程中的能源浪费问题,电子负载通过Boost隔离升压和双闭环控制,实现高精度恒压/恒流模式,并网逆变器选用中低压拓扑结构,具有快速响应、高转换效率(≥90%)及低谐波干扰等特点,符合相关国家标准。此外,系统采用模块化结构设计,优化散热风道,并配备高精度采样电路,使电压和电流测量精度分别达到0.2%和0.5%。该方案在稳定性、效率和兼容性方面均表现优异,适用于各类电源测试场景,并为可再生能源并网应用提供了可靠的技术支持,具有显著的节能效益和工程应用价值。

关键词: 馈能式电子负载;并网逆变器;能量回馈

Abstract

This paper designs and implements a programmable multi-channel regenerative electronic load and grid connection scheme, aiming to solve the problem of energy waste in the traditional electronic load testing process. The electronic load achieves high-precision constant voltage/constant current modes through Boost isolated boost and dual closed-loop control. The grid inverter adopts a medium and low voltage topology structure, featuring fast response, high conversion efficiency (≥90%), and low harmonic interference, which complies with relevant national standards. Additionally, the system adopts a modular structure design, optimizes the heat dissipation air duct, and is equipped with high-precision sampling circuits, enabling voltage and current measurement accuracies of 0.2% and 0.5% respectively. This scheme performs excellently in terms of stability, efficiency, and compatibility, and is suitable for various power supply testing scenarios. It also provides reliable technical support for renewable energy grid connection applications, demonstrating significant energy-saving benefits and engineering application value.

Key words: Energy-fed electronic load; Grid-connected inverter; Energy feedback

参考文献 References

[1] 张兴, 曹仁贤. 《并网逆变器与可再生能源发电技术》. 机械工业出版社, 2014.

[2] Wang, Y., et al. "Design of a Bidirectional DC-DC Converter for Low-Voltage DC Microgrid Applications." IEEE Transactions on Power Electronics, 2017, 32(6): 4563-4572.

[3] 李志刚, 等. "可编程多通道电子负载的分布式控制方法." 《电工技术学报》, 2019, 34(10): 2128-2136.

[4] Erickson, R. W., & Maksimovic, D. Fundamentals of Power Electronics. Springer, 2020.

[5] GB/T 37408-2019 《光伏发电并网逆变器技术要求》.

[6] GB/T 19939-2005 《光伏系统并网性能要求》.

[7] Zhang, C., et al. "A High-Efficiency Energy Recovery Electronic Load with Adaptive Control." IEEE Applied Power Electronics Conference (APEC), 2020.

[8] 王磊, 等. "大功率电子设备的热管理与可靠性分析." 《电力电子技术》, 2021, 55(3): 45-50.

[9] Texas Instruments. Precision Voltage and Current Sensing for Power Electronics. Application Report, 2018.