[email protected]

工程学研究

Journal of Engineering Research

您当前位置:首页 > 精选文章

Journal of Engineering Research. 2025; 4: (4) ; 10.12208/j.jer.20250166 .

Motor fault diagnosis method based on deep learning
基于深度学习的电机故障诊断方法

作者: 马金凤 *

尼得科电机(大连)有限公司 辽宁大连

*通讯作者: 马金凤,单位:尼得科电机(大连)有限公司 辽宁大连;

引用本文: 马金凤 基于深度学习的电机故障诊断方法[J]. 工程学研究, 2025; 4: (4) : 66-68.
Published: 2025/4/7 11:35:46

摘要

随着电机在各领域广泛应用,其故障诊断至关重要。传统方法有局限,深度学习凭借强大特征学习能力崭露头角。通过构建合适神经网络模型,采集电机运行多源数据,如振动、电流等,经数据预处理、模型训练优化,能精准识别电机各类故障模式,有效提升诊断准确率与效率,为保障电机可靠运行提供有力技术支撑。

关键词: 深度学习;电机故障;数据采集;模型训练;故障诊断

Abstract

As motors are widely applied in various fields, fault diagnosis has become crucial. Traditional methods have limitations, while deep learning, with its powerful feature learning capabilities, is emerging as a promising approach. By constructing appropriate neural network models and collecting multi-source data from motor operation, such as vibration and current, through data preprocessing and model training optimization, it can accurately identify various fault modes of motors. This effectively enhances diagnostic accuracy and efficiency, providing strong technical support for ensuring the reliable operation of motors.

Key words: Deep learning; Motor fault; Data acquisition; Model training; Fault diagnosis

参考文献 References

[1] 魏勇召,马龙.基于定子电流信号分析的机车牵引电机轴承故障诊断方法[J].电力机车与城轨车辆,2025, 48(02): 116-119.

[2] 高彩霞,冯凌云,党建军.基于双级PNN的直驱永磁同步电机匝间短路故障诊断方法[J].河南理工大学学报(自然科学版),2025,44(02):116-127.

[3] 刘金浦,张培航.全自动纺织络筒机槽筒电机驱动故障诊断方法[J].毛纺科技,2025,53(03):118-123.

[4] 潘景宜,张旭,晏佳胜,等.基于GA-SVM的DR-PMSM匝间短路故障诊断方法研究[J].微电机,2025,58(02):14-20+32.

[5] 马杰,都业林,金涛,等.动车组牵引电机匝间短路故障诊断方法研究[J].铁道机车车辆,2025,45(01):144-151.

[6] 汪东玉.基于二次分解的水泵电机轴承异常振动故障诊断方法[J].水利技术监督,2025,(02):282-286.

[7] 闫国华,胡以怀.以信号图像表示的基于CNN的永磁同步电机故障诊断方法[J].船舶工程,2025,47(01):114-123.

[8] 陈立秋,马越.基于振动信号分析的电机故障诊断方法研究[J].防爆电机,2025,60(01):79-81+92.