Journal of Electrical Engineering and Automation
Journal of Electrical Engineering and Automation. 2025; 4: (3) ; 10.12208/j.jeea.20250069 .
总浏览量: 62
1 南京邮电大学 江苏南京
2 国电南瑞集团 江苏南京
*通讯作者: 杨艳,单位: 南京邮电大学 江苏南京;
考虑到永磁同步电机电流环的优化研究目前主要聚焦于其跟踪性能的提升,即动态性能,而对其抗扰动能力的研究相对较少,本文在考虑数字延迟影响的复矢量电流环基础上,提出了一种结合有源阻尼策略的改进型复矢量电流环设计方法,改进策略有效抑制了扰动电压作用下电流的震荡幅值,并缩短了电流恢复稳态的时间,从而提升了电流环的抗扰动能力。仿真与实验结果表明,所提出的改进复矢量有源阻尼电流环设计方法在数字延时较大的工况下能够有效改善电流环的抗干扰能力。
Considering that the optimisation research on the current loop of permanent magnet synchronous motor mainly focuses on the improvement of its tracking performance, i.e., dynamic performance, while the research on its perturbation resistance is relatively less, this paper proposes an improved complex vector current loop design method combined with an active damping strategy based on the complex vector current loop considering the effect of the digital delay, and the improved strategy effectively suppresses the amplitude of the current oscillations under the action of the perturbation voltage, and The improved strategy effectively suppresses the current oscillation amplitude under the disturbance voltage, and shortens the time for the current to return to the steady state, thus improving the anti-disturbance capability of the current loop. Simulation and experimental results show that the proposed improved complex-vector active-damped current loop design method can effectively improve the anti-disturbance capability of the current loop under the condition of large digital delay.
[1] Pontt, Jorge A., et al. "Network-friendly low-switching-frequency multipulse high-power three-level PWM rectifier." IEEE Transactions on In-dustrial Electronics 56.4 (2008): 1254-1262.
[2] A. Yu, S. Wang, C. Zhang, X. Chai and Z. Kan, Design of Digital Current Regulator for PMSM with Low Carrier Ratio, 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, 2019, pp. 1-7.
[3] 伍小杰,袁庆庆,符晓,等.基于复矢量调节器的低开关频率同步电机控制[J].中国电机工程学报,2012,32(03): 124-129+6.
[4] Hu M, Hua W, Ma G, et al. Improved current dynamics of proportional-integral-resonant controller for a dual three-phase FSPM machine[J]. IEEE Transactions on Industrial Electronics, 2020, 68(12): 11719-11730.
[5] Yim J S, Sul S K, Bae B H, et al. Modified current control schemes for high-performance permanent-magnet AC drives with low sampling to operating frequency ratio[J]. IEEE transactions on industry applications, 2009, 45(2): 763-771.
[6] Harnefors L, Pietilainen K, Gertmar L. Torque-maximizing field-weakening control: design, analysis, and parameter selection[J]. IEEE Transactions on Industrial Electronics, 2002, 48(1): 161-168.
[7] Yang S, Wang Q, Xie Z, et al. Digital current controller with a novel active damping design for IPMSM[J]. IEEE Transactions on Energy C-onversion, 2021, 37(1): 185-197.
[8] Yim J S, Sul S K, Bae B H, et al. Modified current control schemes for high-performance permanent-magnet AC drives with low sampling to operating frequency ratio[J]. IEEE transactions on industry applications, 2009, 45(2): 763-771.
[9] 李福, 廖勇, 林豪. 引入主动电阻的永磁同步电机电流环改进控制策略研究[J]. 中国电机工程学报, 2017, 37(15): 4495-4502+4591.
[10] 廖勇, 李福, 林豪. 基于虚拟阻抗的永磁同步电机电流环控制策略[J]. 中国电机工程学报, 2017, 37(19): 5759-5766+5853.
[11] Hinkkanen M, Qu Z, Awan H A A, et al. Current control for IPMSM drives: Direct discrete-time pole-placement design[C]//2015 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD). IEEE, 2015: 156-164.
[12] Yepes A G, Vidal A, Malvar J, et al. Tuning method aimed at optimized settling time and overshoot for synchronous proportional-integral current control in electric machines[J]. IEEE Transactions on Power Electronics, 2013, 29(6): 3041-3054.
[13] Hinkkanen, Marko, et al. "Current control for IPMSM drives: Direct discrete-time pole-placement design." 2015 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD). IEEE, 2015.
[14] Steimel, Andreas. "Direct self-control and synchronous pulse techniques for high-power traction inverters in comparison." IEEE Transactions on Industrial Electronics 51.4 (2004): 810-820.
[15] 孙大南,刁利军,刘志刚.交流传动矢量控制系统时延补偿[J].电工技术学报,2011,26(05):138-145.
[16] F.Briz,A.Diez,M.W.Degner,et al.Dynamic analysis of current regulators for AC motors using complex vectors. IEEE Transactions on Industrial Applications, 1999, 35(1):1424-1432.