[email protected]

国际医学与数据杂志

International Journal of Medicine and Data

您当前位置:首页 > 精选文章

International Journal of Medicine and Data. 2025; 9: (1) ; 10.12208/j.ijmd.20250017 .

Research progress and prospects of drug target affinity prediction based on multi head attention GAN
基于多头注意力GAN的药物靶点亲和力预测研究进展与展望

作者: 徐璐洋 *, 谢跃生, 岳中乐, 陈彦君, 孟凡爱, 陈果

华北理工大学 河北唐山

*通讯作者: 徐璐洋,单位:华北理工大学 河北唐山;

引用本文: 徐璐洋, 谢跃生, 岳中乐, 陈彦君, 孟凡爱, 陈果 基于多头注意力GAN的药物靶点亲和力预测研究进展与展望[J]. 国际医学与数据杂志, 2025; 9: (1) : 84-87.
Published: 2025/2/27 15:16:30

摘要

近年来深度学习方法在小分子药物与蛋白质靶标的亲和力(DTA)预测领域取得了显著进展,生成对抗网络(GAN)已被应用于该领域,但当前主流方法多局限于浅层GAN架构。本文综述了基于深度学习的DTA预测方法,探讨了其在提高预测精度和模型可解释性方面的潜力。文章首先回顾了传统方法和深度学习方法的优缺点,随后重点介绍了多头注意力机制和GAN的结合应用,最后总结了当前研究的挑战和未来发展方向。

关键词: DTA预测;生成对抗网络;Attention机制;SHAP

Abstract

Recent advances in deep learning have significantly improved small molecule-drug target affinity (DTA) prediction, with generative adversarial networks (GANs) emerging as a promising approach. However, current GAN-based methods primarily use shallow architectures. This paper reviews deep learning-based DTA prediction methods, examining their potential to enhance accuracy and interpretability. We compare traditional and deep learning approaches, highlight the integration of multi-head attention with GANs, and discuss current challenges and future directions.

Key words: DTA prediction; Generate adversarial networks; Attention mechanism; SHAP

参考文献 References

[1] Zhang D, Zhang T, Zhu J, et al. Discovery of novel targets and me chanisms of MEK inhibitor Selumetinib for LGG treatment based on molecular docking and molecular dynamics simulation[J]. Journal of Molecular Modeling, 2022, 28(6): 138.

[2] Pahikkala T, Airola A, Pietilä S, et al. Toward more realistic drug–target interaction predictions[J]. Briefings in bioinformatics, 2015, 16(2): 325-337.

[3] Zhu Z, Yao Z, Zheng X, Qi G, Li Y, Mazur N, et al. Drug–target affinity prediction method based on multi-scale information interaction and graph optimization. Comput[J]. Biol, 2023, Med. 167. 

[4] Thin Nguyen, Hang Le, Thomas P Quinn, Tri Nguyen, Thuc Duy Le, Svetha Venkatesh, GraphDTA: predicting drug–target binding affinity with graph neural networks, Bioinformatics, Volume 37, Issue 8, March 2021, Pages 1140–1147.

[5] 彭杨,朱小飞,胡冬冬.基于注意力感知和模态融合的药物-靶点相互作用预测方法[J/OL].太原理工大学学报:1-10[2024-04-23].