[email protected]

国际医学与数据杂志

International Journal of Medicine and Data

您当前位置:首页 > 精选文章

International Journal of Medicine and Data. 2025; 9: (2) ; 10.12208/j.ijmd.20250018 .

Advances in the application of computational technologies in drug design and discovery
计算机技术在药物设计与发现中的应用进展

作者: 於振兴 *

重庆理工大学 重庆

*通讯作者: 於振兴,单位:重庆理工大学 重庆;

引用本文: 於振兴 计算机技术在药物设计与发现中的应用进展[J]. 国际医学与数据杂志, 2025; 9: (2) : 1-6.
Published: 2025/5/23 15:30:40

摘要

随着组学技术与结构生物学的快速发展,计算机技术在药物设计与发现中的作用愈加突出。本文系统综述了当前主流的计算机辅助药物设计策略,重点关注生物信息学方法(如加权基因共表达网络分析WGCNA、单细胞RNA测序scRNA-seq及机器学习)在药物靶点识别中的应用,以及基于分子结构的虚拟筛选、分子对接、分子动力学模拟、结合自由能计算和丙氨酸扫描等技术在候选小分子筛选与机制验证中的关键作用。在此基础上,进一步探讨了多种计算技术的整合应用。最后,展望了在人工智能与多模态数据驱动下,计算机辅助药物设计的未来发展趋势与面临的挑战。本研究可为交叉学科背景下的新药研发提供理论支持与技术参考。

关键词: 计算机辅助药物设计;WGCNA;scRNA-seq;虚拟筛选;分子动力学模拟;结合自由能计算;丙氨酸扫描

Abstract

With the rapid advancement of omics technologies and structural biology, computational technologies have played an increasingly prominent role in drug design and discovery. This review provides a comprehensive overview of the current mainstream strategies in computer-aided drug design (CADD), with a particular emphasis on the application of bioinformatics approaches—such as Weighted Gene Co-expression Network Analysis (WGCNA), single-cell RNA sequencing (scRNA-seq), and machine learning—in the identification of drug targets. Additionally, structure-based techniques including virtual screening, molecular docking, molecular dynamics simulations, binding free energy calculations, and alanine scanning are highlighted for their critical roles in the screening of candidate small molecules and the elucidation of underlying mechanisms. On this basis, the integration and synergistic application of multiple computational technologies are further discussed. Finally, the future development trends and challenges of CADD under the influence of artificial intelligence and multimodal data are explored. This study aims to provide theoretical support and technical reference for novel drug development in interdisciplinary contexts.

Key words: Computer-aided drug design; WGCNA; scRNA-seq; Virtual screening; Molecular dynamics simulations; Binding free energy calculations; Alanine scanning

参考文献 References

[1] LANGFELDER P, HORVATH S. WGCNA: an R package for weighted correlation network analysis[J]. BMC Bioinformatics, 2008, 9(1): 559.

[2] WANG P, ZHENG H, ZHANG J, et al. Identification of key gene modules and genes in colorectal cancer by co-expression analysis weighted gene co-expression network analysis[J]. Bioscience Reports, 2020, 40(9): BSR20202044.

[3] DENG G, ZHANG X, CHEN Y, et al. Single-cell transcriptome sequencing reveals heterogeneity of gastric cancer: progress and prospects[J]. Frontiers in Oncology, 2023, 13.

[4] JOVIC D, LIANG X, ZENG H, et al. Single-cell RNA sequencing technologies and applications: A brief overview[J]. Clinical and Translational Medicine, 2022, 12(3): e694.

[5] R S, JA F, D G, et al. Spatial reconstruction of single-cell gene expression data[J]. Nature biotechnology, 2015, 33(5).

[6] WOLF F A, ANGERER P, THEIS F J. SCANPY: large-scale single-cell gene expression data analysis[J]. Genome Biology, 2018, 19(1): 15.

[7] FAN J, FU A, ZHANG L. Progress in molecular docking[J]. Quantitative Biology, 2019, 7(2): 83-89.

[8] LEMIEUX R U, SPOHR U. How Emil Fischer was led to the lock and key concept for enzyme specificity[J]. Advances in Carbohydrate Chemistry and Biochemistry, 1994, 50: 1-20.

[9] GUEDES I A, DE MAGALHÃES C S, DARDENNE L E. Receptor-ligand molecular docking[J]. Biophysical Reviews, 2014, 6(1): 75-87.

[10] HOLLINGSWORTH S A, DROR R O. Molecular Dynamics Simulation for All[J]. Neuron, 2018, 99(6): 1129-1143.

[11] SOHRABY F, BAGHERI M, ARYAPOUR H. Performing an In Silico Repurposing of Existing Drugs by Combining Virtual Screening and Molecular Dynamics Simulation[J]. Methods in Molecular Biology (Clifton, N.J.), 2019, 1903: 23-43.

[12] POHORILLE A, JARZYNSKI C, CHIPOT C. Good Practices in Free-Energy Calculations[J]. The Journal of Physical Chemistry B, 2010, 114(32): 10235-10253.

[13] BARILLARI C, MARCOU G, ROGNAN D. Hot-spots-guided receptor-based pharmacophores (HS-Pharm): a knowledge-based approach to identify ligand-anchoring atoms in protein cavities and prioritize structure-based pharmacophores[J]. Journal of Chemical Information and Modeling, 2008, 48(7): 1396-1410.

[14] NIU X, XU C, CHEUK Y C, et al. Characterizing hub biomarkers for post-transplant renal fibrosis and unveiling their immunological functions through RNA sequencing and advanced machine learning techniques[J]. Journal of Translational Medicine, 2024, 22(1).

[15] JUMPER J, EVANS R, PRITZEL A, et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596(7873): 583-589.

[16] ABRAMSON J, ADLER J, DUNGER J, et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3[J]. Nature, 2024, 630(8016): 493-500.