Journal of Engineering Research
Journal of Engineering Research. 2025; 4: (1) ; 10.12208/j.jer.20250008 .
总浏览量: 53
辽宁科技大学电子与信息工程学院 辽宁鞍山
*通讯作者: 路月昊,单位:辽宁科技大学电子与信息工程学院 辽宁鞍山;
群机器人队形在执行任务时,不可避免地会遇到活动空间受到限制的环境,如狭长的走廊、隧道、楼道等场景。针对活动空间受限环境中的群机器人队形的避障问题,本文提出了一种基于子队形划分的避障策略。在该策略中,队形中有正式节点的机器人距离障碍较远时会依据吸引线段式主-从队形图确定leader并跟随leader运动。当有正式节点机器人距离障碍较近时则通过判断自身和leader到障碍物的距离来决策是否需要离队。如果需要离队,则以该机器人为根的子队形成为一个离队子队形。离队子队形中的领队在得到一个临时目标点后,就向该目标点移动以带领子队形避开障碍。该策略还设计了一种新的冲突消解算法,以化解机器人之间的冲突。最后,为了验证所提策略的有效性,我们进行了不同队形的仿真实验。实验结果验证,当面临活动空间受限的情况时,该策略可以使群机器人队形安全、有序避障。
When performing tasks, swarm robot formations will inevitably encounter environments with limited activity space, such as narrow corridors, tunnels, corridors and other scenarios. In order to solve the obstacle avoidance problem of swarm robot formation in the environment with limited activity space, this paper proposes an obstacle avoidance strategy based on sub-formation division. In this strategy, when the robot with a formal node in the formation is far away from the obstacle, the leader will be determined according to the attraction line segment master-slave formation diagram and follow the leader's movement. When there is a formal node, the robot is close to the obstacle, and it decides whether it needs to leave the team by judging the distance between itself and the leader to the obstacle. If there is a need to leave the team, the sub-formation based on the robot becomes an out-of-team sub-formation. After receiving a temporary target point, the leader in the departing sub-formation moves towards that target point to lead the sub-formation to avoid obstacles. The strategy also designs a new conflict resolution algorithm to resolve conflicts between robots. Finally, in order to verify the effectiveness of the proposed strategy, we carry out simulation experiments with different formations. Experimental results verify that when faced with limited activity space, this strategy can make the swarm robot formation safe and orderly obstacle avoidance.
[1] Burgard W, Moors M, Fox D, et al. Collaborative multi-robot exploration[C]. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065). IEEE, 2000, 1: 476-481.
[2] 黄依新,相晓嘉,周晗,等.基于概率图模型的多机器人自组织协同围捕方法[J].控制理论与应用,2023,40(12): 2225-2235.
[3] Dmytriyev Y, Carnevale M, Giberti H. Enhancing flexibility and safety: collaborative robotics for material handling in end-of-line industrial operations[J]. Procedia Computer Science, 2024, 232: 2588-2597.
[4] L. Wang, D. Zhu, W. Pang, et al, "A Novel Obstacle Avoidance Consensus Control for Multi-AUV Formation System," in IEEE/CAA Journal of Automatica Sinica, vol. 10, no. 5, pp. 1304-1318, May 2023.
[5] 张玉超,蒋沅,代冀阳.三阶多机器人协同编队动态避障控制[J].系统仿真学报,2022,34(08):1762-1774.
[6] 张志伟,滕英元,杨慧欣,等.具有速度、加速度约束的机器人编队避障控制[J].控制理论与应用,2020,37(06):1388-1396.
[7] 呙生富,张鹏超,李海婷,等.基于距离-角度多移动机器人编队避障策略[J].机床与液压,2022,50(03):36-42
[8] WO Shengfu, ZHANG Pengchao, LIHaiting, et al. Obstacle avoidance strategy of multi-mobile robot formation based on distance-angle[J]. Machine Tool & Hydraulics, 2022, 50(3):36-42.
[9] Guo J, Qi J, Wang M, et al. Distributed cooperative obstacle avoidance and formation reconfiguration for multiple quadrotors: Theory and experiment[J]. Aerospace Science and Technology, 2023, 136: 108218.
[10] Wang L, Zhu D, Pang W, et al. A novel obstacle avoidance consensus control for multi-AUV formation system[J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10(5): 1304-1318.
[11] Elkilany B G, Abouelsoud A A, Fathelbab A M R, et al. A proposed decentralized formation control algorithm for robot swarm based on an optimized potential field method[J]. Neural Computing and Applications, 2021, 33: 487-499.
[12] 曹凯,陈阳泉,李康,等.基于动态密度引导的多机器人编队队形变换方法[J/OL].上海交通大学学报,1-19[2024-11-29].https://doi.org/10.16183/j.cnki.jsjtu.2024.209.
[13] 任立敏,王伟东,杜志江,等.障碍环境下多移动机器人动态优化队形变换[J].机器人,2013,35(05):535-543.
[14] 付雷,秦一杰,何顶新,等.基于改进人工势场法的多机器人编队避障[J].控制工程,2022,29(03):388-396.
[15] 罗家祥, 关振峰, 刘海明, 等. 通讯受限条件下的机器人编队算法. 控制理论与应用, 2021, 38(7): 1091 – 1101
[16] XU W B. Artificial moment method for the local path planning of mobile robots. Dalian University of Technology, 2014: 86- 92.
[17] 徐望宝.移动机器人局部路径规划的人工力矩方法.大连理工大学,2014: 86- 92.
[18] XU W B, Chen X B. Artificial moment method for formation control of Swarm Robots [J]. Science in China (Series E: Information Science),2008(08):1255-1265.
[19] 徐望宝,陈雪波.组群机器人队形控制的人工力矩法[J].中国科学(E辑:信息科学),2008,(08):1255-1265.