Journal of Engineering Research
Journal of Engineering Research. 2025; 4: (1) ; 10.12208/j.jer.20250031 .
总浏览量: 78
东莞市恒源液化石油气有限公司 广东东莞
*通讯作者: 黄智敏,单位:东莞市恒源液化石油气有限公司 广东东莞;
城市燃气管网泄漏检测与定位精度提升对保障城市安全至关重要。本文综述了当前泄漏检测技术,包括传感器技术、声波检测法及气体浓度监测法等,分析其优缺点。提出基于多传感器融合与数据挖掘的定位精度提升方法,通过实验验证其有效性。研究结果表明,融合技术可显著提高泄漏定位精度,为城市燃气安全管理提供技术支撑。
Improving leak detection and localization accuracy in urban gas pipeline networks is crucial for ensuring city safety. This paper reviews current leak detection technologies, including sensor technology, acoustic detection methods, and gas concentration monitoring methods, and analyzes their advantages and disadvantages. It proposes a method to enhance localization accuracy through the fusion of multiple sensors and data mining, which has been validated by experiments. The results show that fusion technology can significantly improve the accuracy of leak localization, providing technical support for urban gas safety management.
[1] 刘志刚. 城市燃气管网泄漏检测技术研究[J]. 燃气轮机技术,2022,35(2):45-50.
[2] 陈晓明. 基于声波信号的燃气管道泄漏检测方法[J]. 石油机械,2021,49(5):67-72.
[3] 王海燕. 多传感器数据融合技术在燃气泄漏检测中的应用[J]. 自动化仪表,2023,44(3):89-94.
[4] 李文博. 城市燃气管网泄漏定位精度提升方法探讨[J]. 城市燃气,2024,56(4):56-60.
[5] 马小兵. 城市燃气管网智能化泄漏监测系统研究[J]. 现代工业经济和信息化,2023,13(2): 112-117.
[6] 张建华, 李思成. 利用机器学习优化燃气管网泄漏检测算法[J]. 控制工程,2022,29(5): 865-872.
[7] 何莉莉. 应用深度学习技术于城市燃气管道泄漏识别[J]. 高技术通讯,2023,33(1): 76-83.
[8] 赵勇, 钟良. 基于大数据分析的燃气泄漏预测模型研究[J]. 中国安全科学学报,2021,31(10): 135-140.