[email protected]

现代生命科学研究

Journal of Modern Life Sciences Research

您当前位置:首页 > 精选文章

Journal of Modern Life Sciences Research. 2025; 6: (1) ; 10.12208/j.jlsr.20250001 .

Reproductive maintenance and evolutionary mechanism of distyly species
二型花柱植物繁殖的维持及演化机制

作者: 汪弋碧1, 买尔哈巴·赛来江1,2, 艾沙江·阿不都沙拉木1,2 *

1 喀什大学生命与地理科学学院 新疆喀什
2 新疆帕米尔高原生物资源与生态重点实验室 新疆喀什

*通讯作者: 艾沙江·阿不都沙拉木,单位: 喀什大学生命与地理科学学院 新疆喀什 新疆帕米尔高原生物资源与生态重点实验室 新疆喀什;

引用本文: 汪弋碧, 买尔哈巴·赛来江, 艾沙江·阿不都沙拉木 二型花柱植物繁殖的维持及演化机制[J]. 现代生命科学研究, 2025; 6: (1) : 1-7.
Published: 2025/6/12 21:05:21

摘要

二型花柱是作为研究被子植物花的性器官演化和物种形成过程中的主要对象,已引起进化生态学领域的高度关注。该植物对于提高异交和合法(异花)传粉效率、降低花粉和胚珠贴现、避免雌雄性功能干扰及花型内的自交亲和性等具有重要繁殖维持与进化适应意义。二型花柱植物在被子植物的双子叶和单子叶植物中进行了报道, 但该植物类群的起源和演化趋势相关理论假设存在疑问。本文对二型花花柱植物有关的研究现状、繁育系统特点、起源和演化趋势有关的假设以及二型花柱的功能维持机制和生态适应意义等方面进行了总结,并对其有关起源和演化趋势相关的模型和假说进行了分析,同时对今后二型花柱植物研究方向进行了展望。

关键词: 繁育系统;传粉特性;起源和演化趋势;雌雄功能干扰;自交不亲和性

Abstract

Distyly species have become a focal model system for investigating sexual organ evolution and speciation mechanisms in angiosperms, garnering significant attention in evolutionary ecology. The floral traits of most distyly species have important reproductive and evolutionary significance. They enhance outcrossing and legitimate (cross) pollination rates, reduce ovule and pollen discounting, and avoid monoecious or inter-individual selfing, as well as interference between male and female functions within the same morph flowers. Distyly has been reported in about 25 families that lack genetic relationships, but the existence of some hypotheses regarding the floral sexual origin and evolution trend of distyly plants is still highly doubtful. In this paper, we analyzed and summarized the research on propagation and evolution mechanism of distyly plants, their breeding system characteristics, and the evolutionary adaptive significance of distyly in angiosperms. We also introduce some hypotheses and models related to the origin and evolution of distyly. Additionally, we discuss prospects for further research in this area.

Key words: Breeding system; Pollination characters; Male-female function interference; Self incompatibility

参考文献 References

[1] Azadeh H. 2013. Stylar polymorphism, reciprocity and incompatibility systems in Nymphoides montana (Menyanthaceae) endemic to southeastern Australia. Plant Systematics and Evolution 299: 389-401.

[2] Sánchez J M, Ferrero V, Arroyo J, et al. 2010. Patterns of style polymorphism in five species of the South African genus Nivenia (Iridaceae). Annals of Botany, 106: 321–331.

[3] Rodrigues EB, Consolaro H. 2013. Atypical distyly in Psychotria goyazensis Mull. Arg. (Rubiaceae), an intramorph self-compatible species. Acta Botanica Brasilica, 27: 155–161.

[4] Watanabe K, Shimizu A, Sugawara T. 2014. Dioecy derived from distyly and pollination in Psychotria rubra (Rubiaceae) occurring in the Ryukyu Islands, Japan. Plant Species Biology, 29:181–191.

[5] Barrett SCH, Jesson LK, Baker AM. 2000. The evolution and function of stylar polymorphisms in flowering plants. American Journal of Botany, 85: 253–265.

[6] 周伟, 王红. 2009. 被子植物异型花柱及其进化意义. 植物学报, 44: 742–751.

[7] Faivre A E, McDade L A. 2001. Population-level variation in the expression of heterostyly in three species of Rubiaceae: Does reciprocal placement of anthers and stigmas characterize heterstyly?. American Journal of Botany, 88: 841–853. 

[8] Kissling J, Barrett SCH .2013.Variation and evolution of herkogamy in Exochaenium(Gentianaceae): Implications for the evolution of distyly. Annals of Botany, 112: 95–102.

[9] Aronne G, Buonanno M, Micco VD. 2014. Assessment of distyly syndrome in Primula palinuri Petagn. a rare species living on maritime vertical cliffs. Plant Systematics and Evolution, 300: 917–924.

[10] Liu WL, Wang YF, Chen Q, et al. 2014. Pollination of invasive Eichhornia crassipes (Pontederiaceae) by the introduced honeybee (Apis mellifera L.) in South China. Plant Systematics and Evolution. 299:817–825.

[11] Wang Y, Wang QF, Guo YH, et al. 2005. Reproductive consequences of interactions between clonal growth and sexual reproduction in Nymphoides peltata: a distylous aquatic plant. New Phytologist, 165: 329–336.

[12] Ma YP, Xie WJ, Tian XL, Sun WB, Wu ZK, Milne R. 2014. Unidirectionalhy bridization and reproductive barriers between two heterostylous primrose species in north-west Yunnan, China. Annals of Botany, 113: 763–775.

[13] Barrett SCH. 2002. Mating strategies in flowering plants: the outcrossing-selfing paradigm and beyond. The Royal Society of London Series B Biological Sciences, 358: 991–1004.

[14] Barrett SCH. 2019. ‘A most complex marriage arrangement’: recent advances on heterostyly and unresolved questions. New Phytologist224: 1051–1067.

[15] Charlesworth D, Charlesworth B. 1979. A model for the evolution of distyly. American Naturalist, 114: 467–498. 

[16] Webb CJ, Lloyd DG .1986. The avoidance of interference between the presentation of pollen and stigmas in angiosperms. II. Herkogamy. New Zeeland Journal of Botany. 24:163–178.

[17] Richards AJ 1998. Lethal linkage and its role in the evolution of plant breeding systems. In: Owens S.J., Rudall PJ.(eds), Reporductive Bioloyg in Systematies, Consevration, and Eeonomic Botnay, 71-83. Royal Botanic Garden, Kew

[18] Pailler T, Humeau L, and Thomeson JD.1998. Distyly and heteromorphic incompatibility in oceanic island species of Erythroxylum (Erythroxylaceae). Plant Systematics and Evolution, 213: 187–198.

[19] Zhong L, Barrett SC, Wang XJ, Wu ZK, Sun HY, Li DZ et al. (2019) Phylogenomic analysis reveals multiple evolutionary origins of selfing from outcrossing in a lineage of heterostylous plants. N Phytol 224:1290–1303

[20] Richards, AJ. 2002. Primula. London: BT Batsford.

[21] Barrett SCH, Shore JS (2008) New Insights on Heterostyly: Comparative Biology,Ecology and Genetics. In: Franklin-Tong VE (ed) Self-Incompatibility in Flower-ing Plants: Evolution, Diversity, and Mechanisms. Springer, Berlin, p 3–32

[22] Mora-Carrera E, Stubbs R, Keller B, Léveillé-Bourret T, Conti E (2023) Different mole-cular changes underlie the same phenotypic transition: origins and con-sequences of independent shifts to homostyly within species. Mol Ecol 32:61–78

[23] Huu CN, Keller B, Conti E, Kappel C, Lenhard M (2020) Supergene evolution via stepwise duplications and neofunctionalization of a floral-organ identity gene.Proc Natl Acad Sci USA 117:23148–23157

[24] Barrett SCH. 2019. ‘A most complex marriage arrangement’: recent advances on heterostyly and unresolved questions. New Phytologist224: 1051–1067.

[25] Zhang W, Hu YF, He X, Zhou W, Shao JW (2021) Evolution of Autonomous Selfing in Marginal Habitats: Spatiotemporal Variation in the Floral Traits of the Distylous Primula wannanensis. Front Plant Sci 12:781281

[26] Almeida NM, Castro CC, Leite AV, Novo RR, Machado IC. 2013. Floral polymorphism in Chamaecrista flexuosa (Fabaceae-Caesalpinioideae): A possible case of atypical enantiostyly? Annals of Botany, 112:1117–1123.

[27] Hodgins, KA, Barrett SCH. 2008. Natural selection on floral traits through male and female function in wild populations of the heterostylous daffodil Narcissus triandrus. 62: Evolution,1751-1763.

[28] Brys R, Jacquemyn H (2015) Disruption of the distylous syndrome in Primula veris. AnnBot 115:27–39

[29] Richards AJ .1986. Plant breeding systems. George Allen & Unwin, London.

[30] Ishihama F, Washitani I. 2011. Post-pollination process in a partially self-compatible disylous plant, Primula sieboldii (Primulaceae). Plant Species Biology, 26: 213–220.

[31] Minuto L, Guerrina M, Roccotiello E, Roccatagliata N, Mariotti MG, Casazza G. 2014. Pollination ecology in the narrow endemic winter-flowering Primula allionii (Primulaceae). Journal of Plant Research, 127: 141–150.

[32] Ganders E. 1979. The biology of heterostyly. New Zealand Journal of Botany, 17: 607–635.

[33] Beach JH, Bawa KS. 1980. Role of pollinators in the evolution of dioecy from distyly. Evolution 34: 1138-1142.

[34] Cesaro AC, Barrett SCH, Maurice S, Vaissiere BE, Thompson JD. 2004. An experimental evaluation of self-interference in Narcissus assoanus: functional and evolutionary implications. Journal of Evolutionary Biology, 17: 1367–1376.

[35] Zhu XF, Jiang XF, Li L, Zhang ZQ, Li QJ. 2015. Asymmetrical disassortative pollination in a distylous primrose: the complementary roles of bumblebee nectar robbers and syrphid flies. Scientific Report. doi:10.1038/srep07721.

[36] Barrett SCH. 1992. Evolution and function of heterostyly. Berlin: Springer-Verlag

[37] Kulbaba, MW; Worley AC. 2008. Floral design in Polemonium brandegei (Polemoniaceae): Genetic and phenotypic variation under hawkmoth and hummingbird pollination. International Journal of Plant Sciences. 169:509-522.

[38] 张大勇. 2004. 植物生活史进化与繁殖生态学. 北京: 科学出版社: 96–180. 

[39] Kitamoto N, Ueno S, TakenakaA, et al. 2006. Effect of flowering phenology on pollen flow distance and the consequences for spatial genetic structure within a population of Primula sieboldii (Primulaceae). American Journal of Botany, 93: 226–233.

[40] Wu ZK, Zhang CQ. 2010. Comparative study of pollination biology of two closely related alpine Primula species, namely Primula beesiana and P. bulleyana (Primulaceae). Journal of Systematics and Evolution, 48:109–117.

[41] Vanhoenacker D, Ågren J, Ehrlén J. 2006. Spatio-temporal variation in pollen limitation and reproductive success of two scape morphs in Primula farinosa. New Phytologist, 169: 615–621.

[42] Geert AV, Rossum FV, Triest L. 2010. Do linear landscape elements in farmland act as biological corridors for pollen dispersal? Journal of Ecology, 98, 178–187.

[43] Brys R, Jacquemyn H, Hermy M. 2007. Impact of mate availability, population size, and spatial aggregation of morphs on sexual reproduction in a distylous, aquatic plant. American Joural of Botany, 94: 119–127.

[44] Kitamoto N, Ueno S, Tsumura Y, et al. 2008. Effect of population density of compatible neighbours on inbreeding level within a Primula sieboldii population. Ecological Research, 23: 307–315.

[45] Guggisberg A, Mansion G, Kelso S, et al. 2006. Evolution of biogeographic patterns, ploidy levels, and breeding systems in a diploid-polyploid species complex of Primula. New Phytologist 171: 617-632.