Modern Social Science Research
Modern Social Science Research. 2025; 5: (2) ; 10.12208/j.ssr.20250067 .
总浏览量: 235
北京国谦投资咨询有限公司 北京
*通讯作者: 周玄,单位:北京国谦投资咨询有限公司 北京;
人工智能推荐算法在提高信息获取效率的同时,也催生了“信息茧房”现象,影响了科研人员的信息流动与学术创新能力。本文首先分析了推荐算法的工作机制,探讨信息茧房的形成原理,并总结了其对科研信息获取的限制,如信息来源单一、跨学科交流受限等。随后,本文提出了针对该问题的应对策略,包括提升推荐算法透明度、优化学术平台的信息分发机制、鼓励研究者主动拓展信息来源,以及引入去中心化技术以保障学术资源的多样性。
With the rapid advancement of artificial intelligence (AI), recommendation algorithms have become deeply integrated into various domains, significantly enhancing information accessibility. However, these algorithms have also led to the emergence of the "information cocoon" phenomenon, where users are increasingly exposed to homogenized content, limiting their access to diverse perspectives. In the scientific research community, this phenomenon raises concerns about the potential narrowing of academic horizons, reduced cross-disciplinary exchange, and impediments to innovation. This paper provides a comprehensive analysis of AI recommendation algorithms, elucidating their mechanisms and their role in shaping information accessibility. Furthermore, it explores the underlying factors contributing to the formation of information cocoons and evaluates their implications for scientific information retrieval. Finally, this study proposes a multi-faceted strategy to mitigate these challenges, including policy interventions, platform-level algorithmic optimizations, and proactive researcher engagement. These recommendations aim to foster a more open and diversified scientific information ecosystem, thereby enhancing academic innovation and interdisciplinary collaboration.
[1] Piao, J., Liu, J., Zhang, F. et al. Human–AI adaptive dynamics drives the emergence of information cocoons. Nat Mach Intell 5, 1214–1224 (2023).https://doi.org/10.1038/s42256-023-00731-4
[2] Wu, L. (2023). A Survey on Accuracy-Oriented Neural Recommendation: From Collaborative Filtering to Information-Rich Recommendation. IEEE Transactions on Knowledge and Data Engineering.https://arxiv.org/abs/2106.10679
[3] 刘海鸥, 李凯, 何旭涛, 等. 面向信息茧房的用户画像多样化标签推荐[J]. 图书馆, 2022(3): 83-89.
[4] 张省, 蔡永涛. 算法时代“信息茧房”生成机制研究[J]. 情报理论与实践, 2023, 46(4): 67-73.
[5] 边江. 2024年值得关注的三大人工智能趋势[J]. Matrix, 2024, 68: 8. https://www.microsoft.com/en-us/research/uploads/prod/2024/08/matrix68.pdf
[6] 国家自然科学基金资助项目优秀成果选编[EB/OL]. 2017-03-31. https://www.nsfc.gov.cn/nsfc/cen/yxcg/06/2017-03-31.pdf
[7] 申楠. 算法时代的信息茧房与信息公平[J]. 西安交通大学学报(社会科学版), 2020, 40(2): 139-144. http://www.ir.xjtu.edu.cn/item/385528