Journal of Modern Biotechnology Research
Journal of Modern Biotechnology Research. 2025; 3: (1) ; 10.12208/j.jmbr.20250003 .
总浏览量: 316
1延安大学 陕西延安
2陕西省区域生物资源保育与利用工程技术研究中心 陕西延安
*通讯作者: 白占涛,单位:延安大学 陕西延安 陕西省区域生物资源保育与利用工程技术研究中心 陕西延安;
阿尔兹海默病(Alzheimer's disease, AD)作为全球范围内最多见的神经退行性疾病,表现为进行性认知功能衰退。新近研究表明代谢稳态失衡与AD病理进程密切关联,且脑内乳酸异常蓄积与认知功能障碍程度呈显著正相关性。星形胶质细胞作为中枢神经系统内主要的乳酸生成细胞,通过星形胶质细胞-神经元乳酸穿梭(ANLS)机制维持神经元能量稳态。AD病理状态下,ANLS系统功能紊乱导致乳酸生成/清除动态平衡破坏,形成病理性乳酸蓄积,通过激活β-分泌酶、促进Aβ沉积、加剧Tau蛋白异常磷酸化、触发神经炎症及氧化应激等多重途径,加速神经元损伤和突触功能障碍而加重AD病程。乳酸水平积蓄性上升成为 AD 早期诊断新的重要病理标志物。基于此,本文综述了乳酸与乳酸穿梭和AD病理的关联机理,以深刻理解AD发生代谢机并提出新型AD诊疗策略。
Alzheimer's disease (AD), the most common neurodegenerative disease in the world, is characterized by progressive cognitive decline. Recent studies have shown that the imbalance of metabolic homeostasis is closely related to the pathological process of AD, and the abnormal accumulation of lactic acid in the brain is significantly positively correlated with the degree of cognitive dysfunction. Astrocytes, as the main lactate producing cells in the central nervous system, maintain neuronal energy homeostasis through the astro-neuronal lactate shuttle (ANLS) mechanism. In the pathological state of AD, the dysfunction of the ANLS system leads to the breakdown of the dynamic balance of lactic acid production/clearance and the formation of pathological lactic acid accumulation, which accelerates neuronal damage and synaptic dysfunction through multiple pathways such as activating β-secretase, promoting Aβ deposition, intensifying abnormal phosphorylation of Tau protein, triggering neuroinflammation and oxidative stress. The accumulated increase of lactic acid level has become a new important pathological marker for the early diagnosis of AD. Based on this, this paper reviews the correlation mechanism between lactic acid and lactic acid shuttle and AD pathology, so as to deeply understand the pathogenesis of AD and propose new diagnosis and treatment strategies for AD.
[1] LANE C A, HARDY J, SCHOTT J M. Alzheimer's disease [J]. European journal of neurology, 2018, 25(1): 59-70.
[2] CATALDI R, SACHDEV P S, CHOWDHARY N, et al. A WHO blueprint for action to reshape dementia research [J]. Nature aging, 2023, 3(5): 469-71.
[3] ABDELNOUR C, AGOSTA F, BOZZALI M, et al. Perspectives and challenges in patient stratification in Alzheimer's disease [J]. Alzheimer's research & therapy, 2022, 14(1): 112.
[4] CUMMINGS J. New approaches to symptomatic treatments for Alzheimer's disease [J]. Molecular neurodegeneration, 2021, 16(1): 2.
[5] MATTSON M P, LONGO V D, HARVIE M. Impact of intermittent fasting on health and disease processes [J]. Ageing research reviews, 2017, 39: 46-58.
[6] DYŃKA D, KOWALCZE K, PAZIEWSKA A. The Role of Ketogenic Diet in the Treatment of Neurological Diseases [J]. Nutrients, 2022, 14(23).
[7] SOLCH R J, AIGBOGUN J O, VOYIADJIS A G, et al. Mediterranean diet adherence, gut microbiota, and Alzheimer's or Parkinson's disease risk: A systematic review [J]. Journal of the neurological sciences, 2022, 434: 120166.
[8] VAN DEN BRINK A C, BROUWER-BROLSMA E M, BERENDSEN A A M, et al. The Mediterranean, Dietary Approaches to Stop Hypertension (DASH), and Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) Diets Are Associated with Less Cognitive Decline and a Lower Risk of Alzheimer's Disease-A Review [J]. Advances in nutrition (Bethesda, Md), 2019, 10(6): 1040-65.
[9] LIU X, MORRIS M C, DHANA K, et al. Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) study: Rationale, design and baseline characteristics of a randomized control trial of the MIND diet on cognitive decline [J]. Contemporary clinical trials, 2021, 102: 106270.
[10] VAVŘIČKA J, BROŽ P, FOLLPRECHT D, et al. Modern Perspective of Lactate Metabolism [J]. Physiological research, 2024, 73(4): 499-514.
[11] WU A, LEE D, XIONG W C. Lactate Metabolism, Signaling, and Function in Brain Development, Synaptic Plasticity, Angiogenesis, and Neurodegenerative Diseases [J]. International journal of molecular sciences, 2023, 24(17).
[12] WANG M Y, ZHOU Y, LI W L, et al. Friend or foe: Lactate in neurodegenerative diseases [J]. Ageing research reviews, 2024, 101: 102452.
[13] WEI L, YANG X, WANG J, et al. H3K18 lactylation of senescent microglia potentiates brain aging and Alzheimer's disease through the NFκB signaling pathway [J]. Journal of neuroinflammation, 2023, 20(1): 208.
[14] SHIRBANDI K, RIKHTEGAR R, KHALAFI M, et al. Functional Magnetic Resonance Spectroscopy of Lactate in Alzheimer Disease: A Comprehensive Review of Alzheimer Disease Pathology and the Role of Lactate [J]. Topics in magnetic resonance imaging : TMRI, 2023, 32(2): 15-26.
[15] SCHELTENS P, DE STROOPER B, KIVIPELTO M, et al. Alzheimer's disease [J]. Lancet (London, England), 2021, 397(10284): 1577-90.
[16] FALGàS N, WALSH C M, NEYLAN T C, et al. Deepen into sleep and wake patterns across Alzheimer's disease phenotypes [J]. Alzheimer's & dementia : the journal of the Alzheimer's Association, 2021, 17(8): 1403-6.
[17] GRAFF-RADFORD J, YONG K X X, APOSTOLOVA L G, et al. New insights into atypical Alzheimer's disease in the era of biomarkers [J]. The Lancet Neurology, 2021, 20(3): 222-34.
[18] CHI S, YU J T, TAN M S, et al. Depression in Alzheimer's disease: epidemiology, mechanisms, and management [J]. Journal of Alzheimer's disease : JAD, 2014, 42(3): 739-55.
[19] KOSEL F, PELLEY J M S, FRANKLIN T B. Behavioural and psychological symptoms of dementia in mouse models of Alzheimer's disease-related pathology [J]. Neuroscience and biobehavioral reviews, 2020, 112: 634-47.
[20] ROSTAGNO A A. Pathogenesis of Alzheimer's Disease [J]. International journal of molecular sciences, 2022, 24(1).
[21] SE THOE E, FAUZI A, TANG Y Q, et al. A review on advances of treatment modalities for Alzheimer's disease [J]. Life sciences, 2021, 276: 119129.
[22] 2023 Alzheimer's disease facts and figures [J]. Alzheimer's & dementia : the journal of the Alzheimer's Association, 2023, 19(4): 1598-695.
[23] GOATE A, CHARTIER-HARLIN M C, MULLAN M, et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease [J]. Nature, 1991, 349(6311): 704-6.
[24] HARDY J A, HIGGINS G A. Alzheimer's disease: the amyloid cascade hypothesis [J]. Science (New York, NY), 1992, 256(5054): 184-5.
[25] IQBAL K, ALONSO ADEL C, CHEN S, et al. Tau pathology in Alzheimer disease and other tauopathies [J]. Biochimica et biophysica acta, 2005, 1739(2-3): 198-210.
[26] HENEKA M T, CARSON M J, EL KHOURY J, et al. Neuroinflammation in Alzheimer's disease [J]. The Lancet Neurology, 2015, 14(4): 388-405.
[27] ONYANGO I G, LU J, RODOVA M, et al. Regulation of neuron mitochondrial biogenesis and relevance to brain health [J]. Biochimica et biophysica acta, 2010, 1802(1): 228-34.
[28] BARNES D E, YAFFE K. The projected effect of risk factor reduction on Alzheimer's disease prevalence [J]. The Lancet Neurology, 2011, 10(9): 819-28.
[29] MOSCONI L, PUPI A, DE LEON M J. Brain glucose hypometabolism and oxidative stress in preclinical Alzheimer's disease [J]. Annals of the New York Academy of Sciences, 2008, 1147: 180-95.
[30] CUNNANE S C, TRUSHINA E, MORLAND C, et al. Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing [J]. Nature reviews Drug discovery, 2020, 19(9): 609-33.
[31] PIETROFESA R A, VELALOPOULOU A, LEHMAN S L, et al. doi:10.3390/ijms17060953 [J]. International journal of molecular sciences, 2016, 17(6): 953.
[32] AANERUD J, BORGHAMMER P, RODELL A, et al. Sex differences of human cortical blood flow and energy metabolism [J]. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 2017, 37(7): 2433-40.
[33] BROOKS G A. Lactate as a fulcrum of metabolism [J]. Redox biology, 2020, 35: 101454.
[34] RABINOWITZ J D, ENERBäCK S. Lactate: the ugly duckling of energy metabolism [J]. Nature metabolism, 2020, 2(7): 566-71.
[35] ZHANG D, TANG Z, HUANG H, et al. Metabolic regulation of gene expression by histone lactylation [J]. Nature, 2019, 574(7779): 575-80.
[36] ROLAND C L, ARUMUGAM T, DENG D, et al. Cell surface lactate receptor GPR81 is crucial for cancer cell survival [J]. Cancer research, 2014, 74(18): 5301-10.
[37] PELLERIN L, MAGISTRETTI P J. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization [J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(22): 10625-9.
[38] YANG C, PAN R Y, GUAN F, et al. Lactate metabolism in neurodegenerative diseases [J]. Neural regeneration research, 2024, 19(1): 69-74.
[39] ZYŚK M, BERETTA C, NAIA L, et al. Amyloid-β accumulation in human astrocytes induces mitochondrial disruption and changed energy metabolism [J]. Journal of neuroinflammation, 2023, 20(1): 43.
[40] PAN R Y, HE L, ZHANG J, et al. Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer's disease [J]. Cell metabolism, 2022, 34(4): 634-48.e6.
[41] MINHAS P S, JONES J R, LATIF-HERNANDEZ A, et al. Restoring hippocampal glucose metabolism rescues cognition across Alzheimer's disease pathologies [J]. Science (New York, NY), 2024, 385(6711): eabm6131.
[42] WANG C, ZONG S, CUI X, et al. The effects of microglia-associated neuroinflammation on Alzheimer's disease [J]. Frontiers in immunology, 2023, 14: 1117172.
[43] LEE H W, XU Y, ZHU X, et al. Endothelium-derived lactate is required for pericyte function and blood-brain barrier maintenance [J]. The EMBO journal, 2022, 41(9): e109890.
[44] FAN M, YANG K, WANG X, et al. Lactate promotes endothelial-to-mesenchymal transition via Snail1 lactylation after myocardial infarction [J]. Science advances, 2023, 9(5): eadc9465.
[45] BROOKS G A. The Science and Translation of Lactate Shuttle Theory [J]. Cell metabolism, 2018, 27(4): 757-85.
[46] LAMA S, AUER R N, TYSON R, et al. Lactate storm marks cerebral metabolism following brain trauma [J]. The Journal of biological chemistry, 2014, 289(29): 20200-8.
[47] MAGISTRETTI P J, ALLAMAN I. Lactate in the brain: from metabolic end-product to signalling molecule [J]. Nature reviews Neuroscience, 2018, 19(4): 235-49.
[48] JASZCZYK A, JUSZCZAK G R. Glucocorticoids, metabolism and brain activity [J]. Neuroscience and biobehavioral reviews, 2021, 126: 113-45.
[49] SLUPE A M, KIRSCH J R. Effects of anesthesia on cerebral blood flow, metabolism, and neuroprotection [J]. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 2018, 38(12): 2192-208.
[50] LAURETTI E, LI J G, DI MECO A, et al. Glucose deficit triggers tau pathology and synaptic dysfunction in a tauopathy mouse model [J]. Translational psychiatry, 2017, 7(1): e1020.
[51] WANG Q, DUAN L, LI X, et al. Glucose Metabolism, Neural Cell Senescence and Alzheimer's Disease [J]. International journal of molecular sciences, 2022, 23(8).
[52] LEPIARZ-RABA I, GBADAMOSI I, FLOREA R, et al. Metabolic regulation of microglial phagocytosis: Implications for Alzheimer's disease therapeutics [J]. Translational neurodegeneration, 2023, 12(1): 48.
[53] GAO X, PANG C, FAN Z, et al. Regulation of newly identified lysine lactylation in cancer [J]. Cancer letters, 2024, 587: 216680.
[54] BELL J D, BROWN J C, KUBAL G, et al. NMR-invisible lactate in blood plasma [J]. FEBS letters, 1988, 235(1-2): 81-6.
[55] LI X, ZHANG Y, XU L, et al. Ultrasensitive sensors reveal the spatiotemporal landscape of lactate metabolism in physiology and disease [J]. Cell metabolism, 2023, 35(1): 200-11.e9.
[56] WANG N, WANG W, WANG X, et al. Histone Lactylation Boosts Reparative Gene Activation Post-Myocardial Infarction [J]. Circulation research, 2022, 131(11): 893-908.