[email protected]

工程学研究

Journal of Engineering Research

您当前位置:首页 > 精选文章

Journal of Engineering Research. 2024; 3: (3) ; 10.12208/j.jer.20240037 .

Roadside detection method based on 3D LIDAR Point Cloud
基于三维激光雷达点云的道路路边检测方法

作者: 雷志勇 *

国家能源集团陕西神延煤炭有限责任公司 陕西榆林

*通讯作者: 雷志勇,单位:国家能源集团陕西神延煤炭有限责任公司 陕西榆林;

引用本文: 雷志勇 基于三维激光雷达点云的道路路边检测方法[J]. 工程学研究, 2024; 3: (3) : 102-110.
Published: 2024/9/28 16:46:11

摘要

针对可通行区域中道路路边提取问题,在仅三维激光雷达点云作为输入情况下,提出了一种基于人工特征提取的路边检测方法。该方法通过检测道路路边点来获得道路的可通行区域。对于道路路边检测,提出了一种动基点和基轴法,该方法时刻选定新的基点与基轴,使得基轴与基点能够灵活调整方向与位置,从而提高非直道路路边点分类及提取的准确率。并采用了最小二乘法对路边点集合进行曲线拟合获得光滑的道路延展趋势,实现了平面道路路边曲线的稳定输出。此外为了解决帧间的波动问题,将卡尔曼滤波算法用于道路边缘的跟踪识别,通过构建预测和观测模型,实现了对路边点的稳定输出,确保系统在不同车速和道路状况下的可靠性。

关键词: 路边提取;激光雷达;人工特征提取;路边检测;曲线拟合;延展趋势

Abstract

Aiming at the problem of roadside extraction in passable area, a method based on artificial feature extraction is proposed by using only three-dimensional LIDAR point cloud. The method obtains the accessible area of the road by detecting the roadside points. For roadside detection, a moving base-point and base-axis method is proposed, which selects a new base-point and base-axis at all times, so that the base-axis and base-points can flexibly adjust the direction and position to improve the accuracy of the classification and extraction of non-straight roadside points. And the least squares method is used to the roadside point collection curve fitting to obtain the smooth road extension trend, which realizes the stable output of the plane roadside curve. In addition, in order to solve the fluctuation problem between frames, Kalman filtering algorithm is used for tracking and identification of road edges, and by constructing the prediction and observation model, the stable output of roadside points is realized, which ensures the reliability of the system under different vehicle speeds and road conditions.

Key words: Roadside extraction; LIDAR; Artificial feature extraction; Roadside detection; Curve fitting; Extended trend

参考文献 References

[1] Van, Brummelen, Jessica, et al. Autonomous vehicle perception: The technology of today and tomorrow[J]. Transportation Research Part C Emerging Technologies, 2018.

[2] Serna A, Marcotegui B. Urban accessibility diagnosis from mobile laser scanning data. ISPRS J. Photogramm. Remote Sens. 2013, 84, 23–32.

[3] Husain A, Vaishya R. A time efficient algorithm for ground point filtering from mobile lidar data. In Proceedings of the 2016 International Conference on Control, Computing, Communication and Materials (ICCCCM), Allahabad, India, 21–22 October 2016; pp. 1–5.

[4] Yadav M, Singh A. K, Lohani, B. Extraction of road surface from mobile lidar data of complex road environment. Int. J. Remote Sens. 2017, 38, 4655–4682.

[5] Wu B, Yu B, Huang C, Wu Q, Wu J. Automated extraction of ground surface along urban roads from mobile laser scanning point clouds. Remote Sens. Lett. 2016, 7, 170–179.

[6] Wu J, Xu H, Zhao J. Automatic lane identification using the roadside lidar sensors[J]. IEEE Intelligent Transportation Systems Magazine, 2020, 12(1).

[7] Wang G, Wu J, He R, et al. A point cloud-based robust road curb detection and tracking method[J]. IEEE Access, 2019, 7: 24611-24625.

[8] Sun P, Zhao X, Xu Z, et al. A 3D lidar data-based dedicated road boundary detection algorithm for autonomous vehicles[J]. IEEE Access, 2019, 7: 29623-29638.

[9] Zhang Y, Wang J, Wang X, et al. Road-segmentation-based curb detection method for self-driving via a 3D-lidar sensor[J]. IEEE transactions on intelligent transportation systems, 2018, 19(12): 3981-3991.

[10] Kang Y. A lidar-Based Decision-Making Method for Road Boundary Detection Using Multiple Kalman Filters[J]. Industrial Electronics, IEEE Transactions on, 2012, 59(11):p.4360-4368.

[11] Chen T, Dai B, Wang R, et al. Gaussian-process-based real-time ground segmentation for autonomous land vehicles[J]. Journal of Intelligent & Robotic Systems, 2014, 76(3-4): 563-582.

[12] Xu S, Wang R, Zheng H. Road curb extraction from mobile lidar point clouds[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 55(2): 996-1009.

[13] 万琴,王耀南.基于卡尔曼滤波器的运动目标检测与跟踪[J].湖南大学学报:自然科学版,2007,34(3):5.

[14] Zhao G, Yuan J. Curb detection and tracking using 3D-lidar scanner[C]. 2012 19th IEEE International Conference on Image Processing. IEEE, 2012: 437-440.

[15] Hu K, Wang T, Li Z, et al. Real-time extraction method of road boundary based on three-dimensional lidar[J]. J. Phys, 2018, 1074: 012080.

[16] Zhang Y, Wang J, Wang X, et al. 3d lidar-based intersection recognition and road boundary detection method for unmanned ground vehicle[C]. 2015 IEEE 18th International Conference on Intelligent Transportation Systems. IEEE, 2015: 499-504.

[17] Yadav M, Singh A K, Lohani B. Extraction of road surface from mobile lidar data of complex road environment[J]. International Journal of Remote Sensing, 2017, 38(16): 4655-4682.

[18] DENG Yuanwang;PU Hongtao;HUA Xinbin;SUN Biao. Research on Lane Detection Based On RC-DBSCAN[J]. Journal of Hunan University(Natural Sciences). 2021,(10): 85~92.

[19] Chen Z, Zhang J, Tao D. Progressive lidar adaptation for road detection[J]. IEEE/CAA Journal of Automatica Sinica, 2019, 6(3): 693-702.

[20] Han X, Lu J, Zhao C, et al. Semisupervised and weakly supervised road detection based on generative adversarial networks[J]. IEEE Signal Processing Letters, 2018, 25(4): 551-555.

[21] Ronneberger O , Fischer P , Brox T . U-Net: Convolutional Networks for Biomedical Image Segmentation[C] International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer International Publishing, 2015.

[22] Tchapmi L , Choy C , Armeni I , et al. SEGCloud: Semantic Segmentation of 3D Point Clouds[J]. IEEE, 2017.

[23] Chen X ,  Ma H ,  Wan J , et al. Multi-View 3D Object Detection Network for Autonomous Driving[C] 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017.

[24] 程云建, 仇文革, 雷劲. 基于三维点云的隧道全局中线提取方法及应用[J]. 湖南大学学报:自然科学版, 2017, 44(9):5. 

[25] Lang A H , Vora S , Caesar H , et al. PointPillars: Fast Encoders for Object Detection from Point Clouds[J]. 2018.

[26] Zhang Y , Zhou Z , David P , et al. PolarNet: An Improved Grid Representation for Online LiDAR Point Clouds Semantic Segmentation[J]. IEEE, 2020.

[27] Zhang C , Luo W , Urtasun R . Efficient Convolutions for Real-Time Semantic Segmentation of 3D Point Clouds[C] 2018:399-408.

[28] 方莉娜. 车载激光点云中道路环境几何特征提取[D]. 武汉大学, 2018.