International Journal of Clinical Research
International Journal of Clinical Research. 2024; 8: (10) ; 10.12208/j.ijcr.20240414 .
总浏览量: 296
1 浙江省肿瘤医院 浙江杭州
2 中国科学院杭州医学研究所 浙江杭州
*通讯作者: 王春雷,单位: 浙江省肿瘤医院 浙江杭州 中国科学院杭州医学研究所 浙江杭州;
本文重点探讨基于纳米颗粒的抗脑肿瘤药物递送的研究进展。概述血脑屏障的结构和功能,光控靶向等离子纳米气泡技术在抗脑肿瘤治疗领域的研究进展,并分析其应用前景与挑战,旨在为靶向脑肿瘤药物递送开辟新的视野。
This paper focuses on the recent advancements in nanoparticle-based drug delivery systems for anti-brain tumor therapy. It provides a brief overview of the structure and function of the blood-brain barrier and comprehensively reviews the progress in light-controlled targeted plasmonic nanobubble technology for anti-brain tumor treatment. The study analyzes the potential applications and challenges of this technology, aiming to open new horizons for targeted drug delivery to brain tumors.
[1] van Tellingen O, Yetkin-Arik B, de Gooijer MC, Wesseling P, Wurdinger T, de Vries HE. Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. Drug Resist Updat. 2015 Mar;19:1-12.
[2] Birzu C, French P, Caccese M, Cerretti G, Idbaih A, Zagonel V, Lombardi G. Recurrent Glioblastoma: From Molecular Landscape to New Treatment Perspectives. Cancers (Basel). 2020 Dec 26;13(1):47.
[3] Taylor OG, Brzozowski JS, Skelding KA. Glioblastoma Multiforme: An Overview of Emerging Therapeutic Targets. Front Oncol. 2019 Sep 26;9:963.
[4] Daneman R, Prat A. The blood-brain barrier. Cold Spring Harb Perspect Biol. 2015 Jan 5;7(1):a020412.
[5] Kadry H, Noorani B, Cucullo L. A blood-brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS. 2020 Nov 18;17(1):69.
[6] Quail DF, Joyce JA. The Microenvironmental Landscape of Brain Tumors. Cancer Cell. 2017 Mar 13;31(3):326-341.
[7] Profaci CP, Munji RN, Pulido RS, Daneman R. The blood-brain barrier in health and disease: Important unanswered questions. J Exp Med. 2020 Apr 6;217(4):e20190062.
[8] Wu D, Chen Q, Chen X, Han F, Chen Z, Wang Y. The blood-brain barrier: structure, regulation, and drug delivery. Signal Transduct Target Ther. 2023 May 25;8(1):217.
[9] Wu SK, Tsai CL, Huang Y, Hynynen K. Focused Ultrasound and Microbubbles-Mediated Drug Delivery to Brain Tumor. Pharmaceutics. 2020 Dec 24;13(1):15.
[10] Qiu Z, Yu Z, Xu T, Wang L, Meng N, Jin H, Xu B. Novel Nano-Drug Delivery System for Brain Tumor Treatment. Cells. 2022 Nov 24;11(23):3761.
[11] Patel MM, Patel BM. Crossing the Blood-Brain Barrier: Recent Advances in Drug Delivery to the Brain. CNS Drugs. 2017 Feb;31(2):109-133.
[12] Puris E, Gynther M, Auriola S, Huttunen KM. L-Type amino acid transporter 1 as a target for drug delivery. Pharm Res. 2020 May 6;37(5):88.
[13] Lu W. Adsorptive-mediated brain delivery systems. Curr Pharm Biotechnol. 2012 Sep;13(12):2340-8.
[14] Kang YJ, Cutler EG, Cho H. Therapeutic nanoplatforms and delivery strategies for neurological disorders. Nano Converg. 2018 Nov 30;5(1):35.
[15] Tortorella S, Karagiannis TC. Transferrin receptor-mediated endocytosis: a useful target for cancer therapy. J Membr Biol. 2014 Apr;247(4):291-307.
[16] Prabhu S, Goda JS, Mutalik S, Mohanty BS, Chaudhari P, Rai S, Udupa N, Rao BSS. A polymeric temozolomide nanocomposite against orthotopic glioblastoma xenograft: tumor-specific homing directed by nestin. Nanoscale. 2017 Aug 3;9(30):10919-10932.
[17] Hettiarachchi SD , Graham RM , Mintz KJ , Zhou Y , Vanni S , Peng Z , Leblanc RM . Triple conjugated carbon dots as a nano-drug delivery model for glioblastoma brain tumors. Nanoscale. 2019 Mar 28;11(13):6192-6205.
[18] Dasgupta A, Sun T, Rama E, Motta A, Zhang Y, Power C, Moeckel D, Fletcher SM, Moosavifar M, Barmin R, Porte C, Buhl EM, Bastard C, Pallares RM, Kiessling F, McDannold N, Mitragotri S, Lammers T. Transferrin Receptor-Targeted Nonspherical Microbubbles for Blood-Brain Barrier Sonopermeation. Adv Mater. 2023 Dec;35(52):e2308150.
[19] Kou L, Bhutia YD, Yao Q, He Z, Sun J, Ganapathy V. Transporter-Guided Delivery of Nanoparticles to Improve Drug Permeation across Cellular Barriers and Drug Exposure to Selective Cell Types. Front Pharmacol. 2018 Jan 26;9:27.
[20] Wu H, Lu H, Xiao W, Yang J, Du H, Shen Y, Qu H, Jia B, Manna SK, Ramachandran M, Xue X, Ma Z, Xu X, Wang Z, He Y, Lam KS, Zawadzki RJ, Li Y, Lin TY. Sequential Targeting in Crosslinking Nanotheranostics for Tackling the Multibarriers of Brain Tumors. Adv Mater. 2020 Apr;32(14):e1903759.
[21] Lakkadwala S, Dos Santos Rodrigues B, Sun C, Singh J. Biodistribution of TAT or QLPVM coupled to receptor targeted liposomes for delivery of anticancer therapeutics to brain in vitro and in vivo. Nanomedicine. 2020 Jan;23:102112.
[22] Shi D , Mi G , Shen Y , Webster TJ . Glioma-targeted dual functionalized thermosensitive Ferri-liposomes for drug delivery through an in vitro blood-brain barrier. Nanoscale. 2019 Aug 15;11(32):15057-15071.
[23] Chen L, Hong W, Ren W, Xu T, Qian Z, He Z. Recent progress in targeted delivery vectors based on biomimetic nanoparticles. Signal Transduct Target Ther. 2021 Jun 7;6(1):225.
[24] Pang L, Zhang C, Qin J, Han L, Li R, Hong C, He H, Wang J. A novel strategy to achieve effective drug delivery: exploit cells as carrier combined with nanoparticles. Drug Deliv. 2017 Nov;24(1):83-91.
[25] Batrakova EV, Gendelman HE, Kabanov AV. Cell-mediated drug delivery. Expert Opin Drug Deliv. 2011 Apr;8(4):415-33.
[26] Xue J, Zhao Z, Zhang L, Xue L, Shen S, Wen Y, Wei Z, Wang L, Kong L, Sun H, Ping Q, Mo R, Zhang C. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence. Nat Nanotechnol. 2017 Jul;12(7):692-700.
[27] Hao X , Xu B , Chen H , Wang X , Zhang J , Guo R , Shi X , Cao X . Stem cell-mediated delivery of nanogels loaded with ultrasmall iron oxide nanoparticles for enhanced tumor MR imaging. Nanoscale. 2019 Mar 14;11(11):4904-4910.
[28] Liu L, Bai X, Martikainen MV, Kårlund A, Roponen M, Xu W, Hu G, Tasciotti E, Lehto VP. Cell membrane coating integrity affects the internalization mechanism of biomimetic nanoparticles. Nat Commun. 2021 Sep 30;12(1):5726.
[29] De Pasquale D, Marino A, Tapeinos C, Pucci C, Rocchiccioli S, Michelucci E, Finamore F, McDonnell L, Scarpellini A, Lauciello S, Prato M, Larrañaga A, Drago F, Ciofani G. Homotypic targeting and drug delivery in glioblastoma cells through cell membrane-coated boron nitride nanotubes. Mater Des. 2020 Jul;192:108742.
[30] Meng W, He C, Hao Y, Wang L, Li L, Zhu G. Prospects and challenges of extracellular vesicle-based drug delivery system: considering cell source. Drug Deliv. 2020 Dec;27(1):585-598.
[31] Niu W, Xiao Q, Wang X, Zhu J, Li J, Liang X, Peng Y, Wu C, Lu R, Pan Y, Luo J, Zhong X, He H, Rong Z, Fan JB, Wang Y. A Biomimetic Drug Delivery System by Integrating Grapefruit Extracellular Vesicles and Doxorubicin-Loaded Heparin-Based Nanoparticles for Glioma Therapy. Nano Lett. 2021 Feb 10;21(3):1484-1492.
[32] Chen W, Yao S, Wan J, Tian Y, Huang L, Wang S, Akter F, Wu Y, Yao Y, Zhang X. BBB-crossing adeno-associated virus vector: An excellent gene delivery tool for CNS disease treatment. J Control Release. 2021 May 10;333:129-138.
[33] Bastiancich C, Bozzato E, Henley I, Newland B. Does local drug delivery still hold therapeutic promise for brain cancer? A systematic review. J Control Release. 2021 Sep 10;337:296-305.
[34] Bastiancich C, Vanvarenberg K, Ucakar B, Pitorre M, Bastiat G, Lagarce F, Préat V, Danhier F. Lauroyl-gemcitabine-loaded lipid nanocapsule hydrogel for the treatment of glioblastoma. J Control Release. 2016 Mar 10;225:283-93.
[35] Sabir F, Ismail R, Csoka I. Nose-to-brain delivery of antiglioblastoma drugs embedded into lipid nanocarrier systems: status quo and outlook. Drug Discov Today. 2020 Jan;25(1):185-194.
[36] de Oliveira Junior ER, Nascimento TL, Salomão MA, da Silva ACG, Valadares MC, Lima EM. Increased Nose-to-Brain Delivery of Melatonin Mediated by Polycaprolactone Nanoparticles for the Treatment of Glioblastoma. Pharm Res. 2019 Jul 1;36(9):131.
[37] Sun C, Ding Y, Zhou L, Shi D, Sun L, Webster TJ, Shen Y. Noninvasive nanoparticle strategies for brain tumor targeting. Nanomedicine. 2017 Nov;13(8):2605-2621.
[38] McDannold N, Arvanitis CD, Vykhodtseva N, Livingstone MS. Temporary disruption of the blood-brain barrier by use of ultrasound and microbubbles: safety and efficacy evaluation in rhesus macaques. Cancer Res. 2012 Jul 15;72(14):3652-63.
[39] Cho H, Lee HY, Han M, Choi JR, Ahn S, Lee T, Chang Y, Park J. Localized Down-regulation of P-glycoprotein by Focused Ultrasound and Microbubbles induced Blood-Brain Barrier Disruption in Rat Brain. Sci Rep. 2016 Aug 11;6:31201.
[40] Chan MH, Chen W, Li CH, Fang CY, Chang YC, Wei DH, Liu RS, Hsiao M. An Advanced In Situ Magnetic Resonance Imaging and Ultrasonic Theranostics Nanocomposite Platform: Crossing the Blood-Brain Barrier and Improving the Suppression of Glioblastoma Using Iron-Platinum Nanoparticles in Nanobubbles. ACS Appl Mater Interfaces. 2021 Jun 16;13(23):26759-26769.
[41] Coluccia D, Figueiredo CA, Wu MY, Riemenschneider AN, Diaz R, Luck A, Smith C, Das S, Ackerley C, O'Reilly M, Hynynen K, Rutka JT. Enhancing glioblastoma treatment using cisplatin-gold-nanoparticle conjugates and targeted delivery with magnetic resonance-guided focused ultrasound. Nanomedicine. 2018 Jun;14(4):1137-1148.
[42] Xiong R, Raemdonck K, Peynshaert K, Lentacker I, De Cock I, Demeester J, De Smedt SC, Skirtach AG, Braeckmans K. Comparison of gold nanoparticle mediated photoporation: vapor nanobubbles outperform direct heating for delivering macromolecules in live cells. ACS Nano. 2014 Jun 24;8(6):6288-96.
[43] Cai Q, Li X, Xiong H, Fan H, Gao X, Vemireddy V, Margolis R, Li J, Ge X, Giannotta M, Hoyt K, Maher E, Bachoo R, Qin Z. Optical blood-brain-tumor barrier modulation expands therapeutic options for glioblastoma treatment. Nat Commun. 2023 Aug 15;14(1):4934.
[44] Bartusik-Aebisher D, Serafin I, Dynarowicz K, Aebisher D. Photodynamic therapy and associated targeting methods for treatment of brain cancer. Front Pharmacol. 2023 Sep 28;14:1250699.
[45] Tang W , Fan W , Lau J , Deng L , Shen Z , Chen X . Emerging blood-brain-barrier-crossing nanotechnology for brain cancer theranostics. Chem Soc Rev. 2019 Jun 4;48(11):2967-3014.