International Journal of Medicine and Data
International Journal of Medicine and Data. 2024; 8: (3) ; 10.12208/j.ijmd.20240042 .
总浏览量: 1063
湘南学院 湖南郴州
*通讯作者: 邵研琨,单位:湘南学院 湖南郴州;
在当今医疗领域,人工智能(AI)的迅猛发展正在深刻改变医学影像学的辅助诊疗方式。随着医疗数据的激增,传统的影像分析方法已难以满足临床需求,尤其是在疾病早期诊断和个性化治疗方面。AI技术,尤其是机器学习和深度学习的应用,使得医学影像的处理和解读变得更加高效和精准。通过分析大量影像数据,AI不仅能够辅助放射科医生提高诊断的准确性,还能在疾病筛查、预后评估和治疗效果监测中发挥重要作用。本文旨在探讨人工智能在医学影像学中的具体应用,评估其在提升诊疗效率、降低医疗成本和改善患者预后方面的潜力,以期为未来的医学实践提供新的思路和方法。
In the contemporary medical field, the swift advancement of Artificial Intelligence (AI) is significantly transforming the approach to diagnostic and therapeutic assistance in medical imaging. As medical data multiplies exponentially, traditional image analysis methods are no longer sufficient to meet clinical demands, particularly in the realms of early-stage disease diagnosis and personalized treatment. The incorporation of AI technologies, especially machine learning and deep learning, has enhanced the efficiency and precision of processing and interpreting medical images. By analyzing vast image datasets, AI not only aids radiologists in boosting diagnostic accuracy but also plays a crucial role in disease screening, prognostic evaluation, and monitoring of treatment responses. This paper aims to investigate the specific applications of AI in medical imaging, evaluate its potential in enhancing diagnostic and treatment efficiency, reducing healthcare costs, and improving patient outcomes, with the intention of providing fresh perspectives and methodologies for future medical practices.
[1] 覃丽燕,邓益斌. 人工智能时代背景下医学影像学专业实践教学改革的研究 [J]. 右江医学, 2024, 52 (08): 761-764.
[2] 赵德馨,徐梓康,周少华. 从影像到智能:医学影像分析中的医学人工智能伦理问题 [J]. 人工智能, 2024, (04): 18-36.
[3] 郭秀花,李卫,夏结来,等. 医学影像人工智能医疗器械临床试验统计学设计要点专家共识 [J]. 中国卫生统计, 2024, 41 (03): 474-480.
[4] 汪洋,王永仁,陈雯,等. 人工智能在医学影像学辅助诊疗中的发展及应用研究新进展 [J]. 影像研究与医学应用, 2024, 8 (11): 9-11.
[5] 程国华,医学人工智能技术及系统开发-基于影像组学和数字肺的智能辅助诊断平台.浙江省,杭州健培科技有限公司,2023-03-01.
[6] 伍佳莉,李东伦,唐泳,等.人工智能辅助医学影像识别技术的应用研究进展[J].现代医药卫生,2022,38(04):603-607.