Novel Chemical Reactions and Mechanisms
Novel Chemical Reactions and Mechanisms. 2024; 1: (1) ; 10.12208/j.ncrm.20240003 .
总浏览量: 163
武汉工程大学化工与制药学院 湖北武汉
*通讯作者: Chi Chen,单位:武汉工程大学化工与制药学院 湖北武汉;
Li-Al-O体系中有LiAl5O8、LiAlO2和Li5AlO4三种化合物,其中LiAlO2因晶格失配度低、可去除性好,作为生长GaN半导体的潜在衬底受到越来越多的关注。LiAlO2在聚变反应堆中作为固体氚增殖材料用于Li(n, a)T核反应生产氚燃料也具有重要意义,因为LiAlO2在中子辐照下表现出高温稳定性,与结构材料具有良好的相容性。此外,LiAlO2在973K下仍具有热化学稳定性,因此通常用作聚合物电解质的载体,形成熔融碳酸盐燃料电池(MCFC)中输送CO32-的隔膜。本文采用激光化学气相沉积法在多晶AlN衬底上制备了(110)和(004)取向的γ-LiAlO2薄膜,沉积温度(Tdep)为1000–1300 K,锂/铝摩尔比(RLi/Al)为1.0–10,总压(Ptot)为100–200 Pa。(004)取向的γ-LiAlO2薄膜由金字塔状晶粒和柱状结构组成,而(110)取向的γ-LiAlO2薄膜则呈粒状和多边形柱状。γ-LiAlO2薄膜的沉积速率可达60–90γm h-1。
The Li-Al-O system has three compounds of LiAl5O8,LiAlO2and Li5AlO4. Among them, LiAlO2 attracts increasing attention as a potential substrate for growing GaN semiconductor due to low lattice mismatch and removability. It is also of interest as a solid tritium breeding material to produce tritium fuel by the nuclear reaction of Li(n, a)T in a fusion reactor, since LiAlO2 shows high-temperature stability and good compatibility with structural materials under irradiation with neutrons. Additionally, LiAlO2 is thermochemically stable even at 973 K so that it is usually used as the support for the polymer electrolyte to form the diaphragm transporting CO32- in molten carbonate fuel cells (MCFC). In this paper, (110) and (004)-oriented γ-LiAlO2 films were prepared on poly-crystalline AlN substrates by laser chemical vapor deposition atdeposition temperature (Tdep) of 1000–1300 K, molar ratio of Li/Al (RLi/Al) of 1.0–10 and lowtotal pressure (Ptot) of 100–200 Pa. The (004)-oriented γ-LiAlO2 films consisted of pyramidal grains with acolumnar structure while (110)-oriented γ-LiAlO2 films showed granular and polygonal column. The deposition rate of γ-LiAlO2 films reached to 60–90γm h-1.
[1] Jianfei Jia, Bing Guo, Qinghe Zhang, Zhongbo Zhang. Grinding performance and acoustic emissions of structured CVD diamond micro-grinding tools. Journal of Materials Processing Technology, 318 (2023), 202-212.
[2] Balaram Paudel Jaisi, Rucheng Zhu, Golap Kalita. Masayoshi Umeno, Morphological changes of carbon thin films with nitrogen doping synthesized by microwave-excited surface wave plasma CVD. Materials Chemistry and Physics, 307(2023), 399-408.
[3] Liying Wu, Lianchang Qiu, Fangfang Zeng, Qiang Lu. Influence of deposition pressure on the microstructure and mechanical properties of CVD TiAlSiN coatings. Surface and Coatings Technology, 466 (2023), 1088-1092.
[4] Mengyang Feng, Peng Jin, Xianquan Meng. One-step growth of a nearly 2 mm thick CVD single crystal diamond with an enlarged surface by optimizing the substrate holder structure. Journal of Crystal Growth, 603 (2023), 95-98.
[5] Qizhong Li, Yixuan Zhang, Baifeng Ji. Improvement of SiC deposition uniformity in CVD reactor by showerhead with baffle. Journal of Crystal Growth, 615 (2023), 878-882.
[6] H.J. Choi, J.J. Lee, S.H. Hyun, H.C. Lim. Submicron γ-LiAlO2 Powder Synthesized from Boehmite. Fuel Cells, 9 (2009), 605-612.
[7] L. Suski, M. Tarniowy. Determination of open-circuit potentials at gas/electrode/YSZ boundary versus molten carbonate reference electrode at medium temperatures: I. Potentials of Au and Pt in O2 and H2+H2O atmospheres. J. Mater. Sci., 36 (2001), 5119-5124.
[8] K. Kinoshita, G.H. Kucera. Enthalpies of formation of liquid and solid binary alloys based on 3d metals: V. Alloys of nickel. J. Electrochem. Soc., 129 (1982), 216-220.
[9] A.V. Sotnikov, H. Schmidt, M. Weihnacht, E.P. Smirnova, T.Y. Chemekova, Y.N. Makarov. Thermoelectric properties of SmS@Y2O2S and Y2O2S@SmS compounds with a core-shell nanostructure. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 57 (2010), 808-811.
[10] Y. Takagaki, E. Chilla, K.H. Ploog. Constituent substitution in hot wall deposition of Bi2S3 films by reaction with substrates. J. Appl. Phys., 97 (2005), 034902.
[11] J. Lin, Z. Wen, X. Xu, N. Li, S. Song. Advances in Micro-Droplets Coalescence Using Microfluidics. Fusion Eng. Des., 85 (2010), 1162-1166.
[12] F. Botter, B. Rasneur, E. Roth. Irradiation behaviour of a tritium breeding material, γ-LiAlO2- results of two in-pile experiments: ALICE I and ALICE II. J. Nucl. Mater., 160 (1988), 48-57.
[13] F. Alessandrini, C. Alvani, S. Casadio, M.R. Mancini, C.A. Nannetti, In-situ tritium release (CORELLI-2 experiment) and ex-reactor ionic conductivity of substoichiometric LiAlO2 breeder ceramics. J. Nucl. Mater., 224 (1995), 236-244.
[14] J.A. Shearer, S.W. Tam, C.E. Johnson. The enthalpies of formation of MgAl2O4, MgSiO3, Mg2SiO4 and Al2SiO5 by oxide melt solution calorimetry. Conference: ANS annual meeting, Detroit, MI, USA, 12 Jun 1983.
[15] M.A. Valenzuela, J. Jimenez-Becerril, P. Bosch, S. Bulbulian, V.H. Lara. Ni and Ni3C catalysts supported on mesoporous silica for dry reforming of methane. J. Am. Ceram. Soc., 79 (1996), 455-460.
[16] T. Frianeza-Kullberg, D. Mcdonald, K. Davis, Standardizing Scoring Conventions for Crohn’s Disease Endoscopy: An International RAND/UCLA Appropriateness Study. Ceram. Trans., 12 (1990), 147.
[17] C. Alvanic, S. Casadio. Effect of Long-Term Testosterone Administration on the Endometrium of Female-to-Male (FtM) Transsexuals. EP235099 (1987).
[18] K.W Sang, S Binpark, et al. CePO4 Coated LiNi0.6Co0.2Mn0.2O2 as Cathode Material and its Electrochemical Performance. J. Nucl. Mater., 257 (1998), 172.
[19] L.M. Carrera, J. Jimenez-Becerril, P. Bosch, S. Bulbulian. Atmospheric agro-industrial sugarcane emissions: It's effect on health and properties of the habitants. J. Am. Ceram. Soc., 78 (1995), 933-938.
[20] C. Chi, H. Katsui, R. Tu, T. Goto. Preparation of Li–Al–O films by laser chemical vapor deposition. Mater. Chem. Phys., 143 (2014), 1338-1343.
[21] S. Zhang, R. Tu, T. Goto. High-speed Epitaxial Growth of (110) SrTiO3 Films on (110) MgAl2O4 Substrates using Laser Chemical Vapour Deposition. J. Am. Ceram. Soc., 95 (2012), 2782-2784.
[22] K. Momma, F. Izumi. Synthesis, Crystal Structure, Ca2+ and Proton Conduction Pathways of New Triphosphate Ca0.5FeHP3O10. J. Appl. Cryst., 44 (2011), 1272-1276.
[23] M. Marezio. Mechanically stimulated thermal synthesis of lithium aluminates. Acta Crystallogr., 19 (1965), 396-400.