Advances in Resources and Environmental Science
Advances in Resources and Environmental Science. 2024; 3: (3) ; 10.12208/j.aes.20240018 .
总浏览量: 123
辽宁石油化工大学环境与安全工程学院,辽宁省清洁能源催化材料重点实验室 辽宁抚顺
*通讯作者: 陈雪冰,单位:辽宁石油化工大学环境与安全工程学院,辽宁省清洁能源催化材料重点实验室 辽宁抚顺;安会勇,单位:辽宁石油化工大学环境与安全工程学院,辽宁省清洁能源催化材料重点实验室 辽宁抚顺;
“异相结”、“同相结”等特色“相结”策略共同特点是,两组分间具有梯度的能级差有利于调控电荷的定向传输,并且两组分间结构的相似性有利于形成原子级匹配的界面,促使光生电荷能够有效分离,从而促进半导体光催化性能的增幅。本文介绍了在不同半导体光催化材料中“异相结”、“同相结”的设计、构建、性能研究和机制探索,并对“异相结”和“同相结”进行了优势比较,对这种特色“相结”策略发展方向进行了展望。
The common features of characteristic "Phase junction" strategy as "heterophase junction" and "homophase junction" is that the two groups have a gradient level difference to regulate the charge of directional transmission, and the similarity between two components structure is conducive to form atomic level matching interface, prompting photoinduced charge can effectively separation, so as to promote the increase of semiconductor photocatalytic performance. This paper introduces the design, construction, performance research and mechanism exploration of "heterophase junction" and "homophase junction" in different semiconductor photocatalytic materials, then compares the advantages of "heterophase junction" and "homophase junction", and prospects the development direction of this characteristic "phase junction" strategy.
[1] Dai M, He Z, Zhang P, et al. ZnWO4-ZnIn2S4 S-scheme hetero-junction for enhanced photocatalytic H2 evolution[J]. Journal of Materials Science & Technology, 2022, 122: 231-242.
[2] Ge H, Xu F, Cheng B, et al. S-scheme heterojunction TiO2/CdS nanocomposite nanofiber as H2 production photocatalyst[J]. ChemCatChem, 2019, 11(24): 6301-6309.
[3] Luo W D, Hu F P, Hu Y Y, et al. Persulfate enhanced visible light photocatalytic degradation of organic pollutants by construct mag-netic hybrid heterostructure[J]. Journal of Alloys and Compounds, 2019, 806: 1207-1219.
[4] 李宁, 闫家望. 高级氧化技术在污水处理中的应用及研究进展[J]. 中国资源综合利用, 2021, 39(02): 9-101.
[5] Vorontsov A V. Advancing Fenton and photo-Fenton water treatment through the catalyst design[J]. Journal of Hazardous Ma-terials, 2019, 372: 103-112.
[6] 李仁贵, 李灿. 太阳能光催化分解水研究进展[J]. 科技导报, 2020, 38(23): 49-61.
[7] Low J, Yu J, Jaroniec M, et al. Heterojunction photocatalysts[J]. Advanced materials, 2017, 29(20): 1601694.
[8] Jiang T, Cheng L, Han Y, et al. One-pot hydrothermal synthesis of Bi2O3-WO3 p-n heterojunction film for photoelectrocatalytic degra-dation of norfloxacin[J]. Separation and Purification Technology, 2020, 238: 116428.
[9] Meng A, Zhu B, Zhong B, et al. Direct Z-scheme TiO2/CdS hierarchical photocatalyst for enhanced photocatalytic H2 production activity[J]. Applied Surface Science, 2017, 422: 518-527.
[10] Zhang X, Li C, Liang J M, et al. Self-templated constructing of heterophase junction into hierarchical porous structure of semi-conductors for promoting photogenerated charge separation[J]. ChemCatChem, 2020, 12(4): 1212-1219.
[11] Bai Y, Zhou Y, Zhang J, et al. Homophase junction for promoting spatial charge separation in photocatalytic water splitting[J]. ACS Catalysis, 2019, 9(4): 3242-3252.
[12] Lu Y, Zhang J, Wang F, et al. K2SO4-assisted hexago-nal/monoclinic WO3 phase junction for efficient photocatalytic degradation of RhB[J]. ACS Applied Energy Materials, 2018, 1(5): 2067-2077.
[13] Shen Q, Jin B, Li J L, et al. In-situ construction of TiO2 poly-morphic junction nanoarrays without cocatalyst for boosting pho-tocatalytic hydrogen generation[J]. Journal of Colloid and Interface Science, 2024, 653: 1630-1641.
[14] Liu F, Shi R, Wang Z, et al. Direct Z‐scheme hetero‐phase junction of black/red phosphorus for photocatalytic water split-ting[J]. Angewandte Chemie, 2019, 131(34): 11917-11921.
[15] Liu J, Wang F, Chen X B, et al. Unraveling the lattice matching effect in surface phase junctions for interfacial charge separation[J]. The Journal of Physical Chemistry C, 2021, 125(26): 14188-14194.