[email protected]

国际临床研究杂志

International Journal of Clinical Research

您当前位置:首页 > 精选文章

International Journal of Clinical Research. 2024; 8: (8) ; 10.12208/j.ijcr.20240333 .

Detection and analysis of serum bile acid profiles using liquied chromatography tandem mass spectrometry in patients with inflammatory bowel disease
炎症性肠病患者血清胆汁酸谱的液质检测与结果分析

作者: 刘楚 *, 董维, 张吉, 沈凌晓, 吴卫甲

杭州凯莱谱医学检验实验室有限公司 浙江杭州

*通讯作者: 刘楚,单位:杭州凯莱谱医学检验实验室有限公司 浙江杭州;

引用本文: 刘楚, 董维, 张吉, 沈凌晓, 吴卫甲 炎症性肠病患者血清胆汁酸谱的液质检测与结果分析[J]. 国际临床研究杂志, 2024; 8: (8) : 174-180.
Published: 2024/8/23 10:52:07

摘要

目的 通过液相色谱串联质谱法(LC-MS/MS)方法准确检测炎症性肠病患者血清中的胆汁酸谱水平,探讨血清胆汁酸谱的检测结果在炎症性肠病患者的临床诊断、早期预防及治疗靶点中的应用价值。方法 入组2019年9月-2023年11月间来我司进行血清胆汁酸谱检测的412例克罗恩病患者、198例溃疡性结肠炎患者、121例健康体检者,采用LC-MS/MS检测其血清胆汁酸中的15种亚组份,包括:胆酸(CA)、甘氨胆酸(GCA)、牛磺胆酸(TCA)、鹅脱氧胆酸(CDCA)、甘氨鹅脱氧胆酸(GCDCA)、牛磺鹅脱氧胆酸(TCDCA)、脱氧胆酸(DCA)、甘氨脱氧胆酸(GDCA)、牛磺脱氧胆酸(TDCA)、石胆酸(LCA)、甘氨石胆酸(GLCA)、牛磺石胆酸(TLCA)、熊脱氧胆酸(UDCA)、甘氨熊脱氧胆酸(GUDCA)、牛磺熊脱氧胆酸(TUDCA),并进行各组之间结果比较。结果 与健康组相比较,溃疡性结肠炎组和克罗恩病组的初级胆汁酸水平要高于健康组,其中游离型的CA和CDCA要明显高于健康组,差异均有统计学意义(P<0.05);次级胆汁酸大部分要低于健康组,其中DCA、LCA、GDCA、GLCA的差别均有统计学意义(P<0.05)。结论 血清胆汁酸谱的LC-MS检测结果可能作为炎症性肠病临床诊断及早期预防、治疗的重要辅助手段。

关键词: 炎症性肠病;血清胆汁酸谱;液相色谱串联质谱;肠道菌群

Abstract

Objective: To explore the change of serum bile acid concentrations using liquid chromatography tandem mass spectrometry (LC-MS/MS) and assess the application of the results in the clinical diagnosis, early prevention and treatment of inflammatory bowel disease.
Methods The relevant clinical data was collected from 412 Crohn disease patients 、198 ulcerative colitis patients and 121healthy individuals undergoing serum bile acid testing from September 2019 - November 2023 at Hangzhou CALIBRA Medical Laboratory . Fifteen serum bile acids were detected by liquid chromatography tandem mass spectrometry.
Results Compared with the healthy control group, the primary bile acids in the ulcerative colitis group and the Crohn's disease group were higher, such as the changed CA and CDCA levels which were statistically significant (P<0.05). The secondary bile acids were mostly lower in the ulcerative colitis group and the Crohn's disease group, such as the changed DCA, LCA, GDCA, and GLCA levels which were statistically significant (P<0.05).
Conclusion   Serum bile acid profiling using LC-MS/MS could possibly be used as an important supplement for the clinical diagnosis, early prevention and treatment of inflammatory bowel disease.

Key words: Inflammatory bowel disease; Serum bile acid profile; Liquid chromatography tandem mass spectrometry; Gut microbiota

参考文献 References

[1] Ng SC, Shi HY, Hamidi N, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies[J]. Lancet,2018,390 (10114) :2769-2778.

[2] GBD 2017 Inflammatory Bowel Disease Collaborators. The global regional, and national burden of inflammatory bowel disease in 195 countries and territories,1990-2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet Gastroenterol Hepatol,2020,5(1):17-30.

[3] King D,Reulen RC, Thomas T,et al. Changing patterns in the epidemiology and outcomes of inflammatory bowel disease in the United Kingdom:2000-2018 [J]. Aliment Pharmacol Ther,2020 ,51 (10) :922-934.

[4] Kotze PG, Underwood FE,Damião AOMC, et al. Progression of Inflammatory Bowel Diseases Throughout Latin America and the Caribbean: A Systematic Review[J]. Clin Gastroenterol Hepatol,2020,18 (2) :304-312.

[5] Kaplan GG, Windsor JW. The four epidemiological stages in the global evolution of inflammatory bowel disease [J]. Nat Rev Gastroenterol Hepatol,2021,18(1):56-66.

[6] Vallim TQDA, Tarling EJ, Edwards PA. Pleiotropic Roles of Bile Acids in Metabolism[J]. Cell Metab, 2013, 17(5) : 657 - 669.

[7] Jia W, Xie G, Jia W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis [J]. Nat Rev Gastroenterol Hepatol,2017. 15(2): 111 – 128.

[8] Bogatxtev SR,Rolando JC, Ismagilox RF, et al. Self reinoculatiog with fecal flora changes microbiota density and composition leading to an altered bile-acid profile in the mouse small intestine [J]. Microbiome, 2020, 8 ( 19) : 1-22 .

[9] 王会敏,王正平,董旻岳. 胆汁酸代谢与调控研究进展[J].国际消化病杂志,2010,30( 2) : 79-82. 

[10] 雷凯,张程亮,刘雅楠等. 胆汁酸代谢轮廓的研究进展及其应用[J].中国药学杂志,2018,53( 2) : 92-97.

[11] Lavelle A, Sokol H, et al. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease [J]. Nat Rev Gastroenterol Hepatol, 2020, 17(4): 223-237.

[12] Chiang JYL. Bile Acid Metabolism and Signaling [ J]. Comprehensive Physiology, 2013, 3(3): 1191 – 1212

[13] Hofmann AF. The enterohepatic circulation of bile acids in mammals:form and functions[J]. Frontiers In Bioscience-Landmark, 2009, 14:2584 - 2598.

[14] Roberts MS, Magnusson BM, Burezynski FJ, et al. Enterohepatic cir-culation-Physiological, pharmacokinetic and clinical implications[ J].Clinical Pharmacokinetics, 2002, 41 (10) : 751 - 790.

[15] Gonzalez FJ . Nuclear receptor control of enterohepatic circulation [ J]. Compr Physiol, 2012,2, 2811– 2828.

[16] Jie Cai, Lulu Sun, Frank J. Gonzalez, et al. Gut microbiota-derived bile acids in intestinal immunity, inflammation, and tumorigenesis [ J]. Cell Host Microbe. 2022 March 09; 30(3): 289–300.

[17] Franzosa EA, Sirota-Madi A, Avila-Pacheco J, Fornelos N, Haiser HJ, Reinker S, Vatanen T, Hall AB, Mallick H, Mciver LJ, et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease [ J].  Nat Microbiol.2019,4, 293–305. 

[18] Lloyd-Price J, Arze C, Ananthakrishnan AN, Schirmer M, Avila-Pacheco J, Poon TW, Andrews E, Ajami NJ, Bonham KS, Brislawn CJ, et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases [ J]. Nature, 2019,569, 655–662.

[19] Sinha SR, Haileselassie Y, Nguyen LP, Tropini C, Wang M, Becker LS, Sim D, Jarr K, Spear ET, Singh G, et al. Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation [ J]. Cell Host Microbe, 2020,27, 659–670 e655. 

[20] Lavelle A, Sokol H, et al. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease [J]. Nat Rev Gastroenterol Hepatol, 2020, 17(4): 223-237.

[21] Sorrentino G, Perino A, Yildiz E, et al. Bile acids signal via TGR5 to activate intestinal stem cells and epithelial regeneration[J]. Gastroenterology, 2020, 159(3): 956-968.

[22] Guo C, Xie S, Chi Z, Zhang J, Liu Y, Zhang L, Zheng M, Zhang X, Xia D, Ke Y, et al. Bile acids control Inflammation and metabolic disorder through inhibition of NLRP3 inflammasome. Immunity, 2016,45, 802–816. 

[23] Campbell C, Mckenney PT, Konstantinovsky D, Isaeva OI, Schizas M, Verter J, Mai C, Jin WB, Guo CJ, Violante S, et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature, 2020,581, 475–479. 

[24] Hang S, Paik D, Yao L, Kim E, Trinath J, Lu J, Ha S, Nelson BN, Kelly SP, Wu L, et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature, 2019,576, 143–148. 

[25] Li W, Hang S, Fang Y, Bae S, Zhang Y, Zhang M, Wang G, Mccurry MD, Bae M, Paik D, et al. A bacterial bile acid metabolite modulates Treg activity through the nuclear hormone receptor NR4A1. Cell Host Microbe, 2021,29, 1366–1377 e1369.