[email protected]

国际材料科学通报

International Journal of Materials Science

您当前位置:首页 > 精选文章

International Journal of Materials Science. 2024; 6: (1) ; 10.12208/j.ijms.20240001 .

Microstructure and mechanical properties of TiB2/Al-Zn-Mg-Cu composite fabricated by electron beam freeform
电子束增材制造TiB2/Al-Zn-Mg-Cu复合材料的微观组织与机械性能研究

作者: 高屹1 *, 李晓东2, 杨彬1, 赵云2, 李险峰1

1 上海交通大学材料科学与工程学院 上海

2 云南昆船机械制造有限公司 云南昆明

*通讯作者: 高屹,单位: 上海交通大学材料科学与工程学院 上海;

引用本文: 高屹, 李晓东, 杨彬, 赵云, 李险峰 电子束增材制造TiB2/Al-Zn-Mg-Cu复合材料的微观组织与机械性能研究[J]. 国际材料科学通报, 2024; 6: (1) : 1-5.
Published: 2024/9/22 18:44:56

摘要

电子束自由成形制造(EBF3)因其适用于太空环境而受到研究人员的广泛关注。本文研究了通过EBF3制造的TiB2/Al-Zn-Mg-Cu复合材料的微观结构和力学性能。结果发现,该复合材料的主要相为α-Al基体和均匀分布的TiB2颗粒。组织中存在等轴晶粒,平均晶粒尺寸分布范围为17.3μm至22.2μm。从基体到零件顶部,横截面显微硬度总体呈增加趋势,从66HV增加到128HV。该增材构件在水平方向上的极限抗拉强度为360MPa,屈服强度为216MPa,伸长率为16%。

关键词: 电子束自由成形制造;铝基复合材料;微观组织;力学性能

Abstract

Electron beam freeform fabrication (EBF3) is attracting more and more attention from researchers due to its suitability for space environments. In this paper, we report the microstructure and mechanical properties of a TiB2/Al-Zn-Mg-Cu composite manufactured by EBF3. The main phases were α-Al and TiB2 particles. There were equiaxed grains in the composite, and the average grain size distribution ranged from 17.3μm to 22.2μm. The cross-sectional microhardness exhibits an overall increasing distribution from 66 to 128 HV1 from the substrate to the top of the part. It had 360 MPa ultimate tensile strength, 216 MPa yield strength, and 16% elongation in the horizontal direction.

Key words: Electron beam freeform fabrication; Aluminum matrix composites; Microstructure; Mechanical properties

参考文献 References

[1] Sha, G., and Cerezo, A., 2004, “Early-Stage Precipitation in Al-Zn-Mg-Cu Alloy (7050),” Acta Materialia 52 (15): 4503-4516.

[2] Buha, J., Lumley, R. N., and Crosky, A. G., 2008, “Secondary Ageing in an Aluminium Alloy 7050,” Materials Science & Engineering: A 492 (1-2): 1-10.

[3] Yan, Wuzhu, Zhufeng Yue, and Jianwen Feng. "Study on the Role of Deposition Path in Electron Beam Freeform Fabrication Process." Rapid Prototyping Journal 23 (2017): 1057-068.

[4] Filippov, A V, S V Fortuna, D A Gurianov, and K N Kalashnikov. "On the Problem of Formation of Articles with Specified Properties by the Method of Electron Beam Freeform Fabrication." Journal of Physics. Conference Series 1115 (2018): 42044.

[5] Watson, J K, K M Taminger, R A Hafley, and D D Petersen. "Development of a Prototype Low-voltage Electron Beam Freeform Fabrication System." Scientific and Technical Aerospace Reports 41.5 (2003): Scientific and Technical Aerospace Reports, 2003 41 (5).

[6] Li, Zixiang, Yinan Cui, Li Wang, Haoyu Zhang, Zhiyue Liang, Changmeng Liu, and Dong Du. "An Investigation into Ti-22Al-25Nb In-situ Fabricated by Electron Beam Freeform Fabrication with an Innovative Twin-wire Parallel Feeding Method." Additive Manufacturing 50 (2022): 102552.

[7] Xu, Junqiang, Jun Zhu, Jikang Fan, Qi Zhou, Yong Peng, and Shun Guo. "Microstructure and Mechanical Properties of Ti-6Al-4V Alloy Fabricated Using Electron Beam Freeform Fabrication." Vacuum 167 (2019): 364-73.

[8] Taminger, Karen M., Robert A. Hafley, and Marcia S. Domack. "Evolution and Control of 2219 Aluminium Microstructural Features through Electron Beam Freeform Fabrication." Materials Science Forum 519-521 (2006): 1297-302.

[9] Cui, Ran, Liang Wang, Longhui Yao, Binqiang Li, Yanqing Su, Liangshun Luo, Ruirun Chen, Jingjie Guo, and Hengzhi Fu. "On the Solidification Behaviors of AlCu5MnCdVA Alloy in Electron Beam Freeform Fabrication: Microstructural Evolution, Cu Segregation and Cracking Resistance." Additive Manufacturing 51 (2022): 102606. Web.

[10] Lei, Shuang, Xianfeng Li, Yaqi Deng, Yakai Xiao, Yanchi Chen, and Haowei Wang. "Microstructure and Mechanical Properties of Electron Beam Freeform Fabricated TiB2/Al-Cu Composite." Materials Letters 277 (2020): 128273.

[11] Bian, Huakang, Kenta Aoyagi, Yufan Zhao, Chikatoshi Maeda, Toshihiro Mouri, and Akihiko Chiba. "Microstructure Refinement for Superior Ductility of Al–Si Alloy by Electron Beam Melting." Additive Manufacturing 32 (2020): 100982.

[12] Moritz, Sarah, Tobias Schwanekamp, Martin Reuber, Jonathan Lentz, Johannes Boes, and Sebastian Weber. "Impact of In Situ Heat Treatment Effects during Laser‐Based Powder Bed Fusion of 1.3343 High‐Speed Steel with Preheating Temperatures up to 700 °C." Steel Research International 94 (2023): 2200775.