Advances in Resources and Environmental Science
Advances in Resources and Environmental Science. 2024; 3: (3) ; 10.12208/j.aes.20240017 .
总浏览量: 185
1 新疆环境保护科学研究院环境工程技术研究所 新疆乌鲁木齐;
2 新疆环境污染监控与风险预警重点实验室 新疆乌鲁木齐;
3 新疆清洁生产工程技术研究中心 新疆乌鲁木齐;
4 国家环境保护准噶尔荒漠绿洲交错区科学观测研究站 新疆乌鲁木齐
*通讯作者: 张洁,单位: 新疆环境保护科学研究院环境工程技术研究所 新疆乌鲁木齐; 新疆环境污染监控与风险预警重点实验室 新疆乌鲁木齐; 新疆清洁生产工程技术研究中心 新疆乌鲁木齐; 国家环境保护准噶尔荒漠绿洲交错区科学观测研究站 新疆乌鲁木齐;
我国纺织印染废水在工业废水中占比较大,因其具有耗水量和排水量大、水质复杂、污染物浓度高、色度高等水质特点,而成为工业废水中较难处理的废水之一。若未经有效处理直接排入水体或农田灌溉,会对水环境、农作物,甚至人类健康产生严重威胁。本文根据我国纺织印染废水现状,总结了目前纺织印染废水的处理方法、尾水的去向以及对环境的安全性,提出了纺织印染废水绿色、健康发展的建议,以期在纺织印染废水高效、可持续资源化利用方面提供科学依据。
Textile printing and dyeing wastewater accounts for a large proportion of industrial wastewater in China. Because of its large water consumption and displacement, complex water quality, high concentration of pollutants and high chrominance water quality characteristics, it has become one of the more difficult to treat industrial wastewater. If it is discharged directly into water or farmland without effective treatment, it will pose a serious threat to water environment, crops, and even human health. According to the present situation of textile printing and dyeing wastewater in China, this paper summarizes the current treatment methods of textile printing and dyeing wastewater, the direction of tail water and the safety of the environment, and puts forward suggestions for the green and healthy development of textile printing and dyeing wastewater, in order to provide scientific basis for the efficient and sustainable resource utilization of textile printing and dyeing wastewater.
[1] 史会剑, 朱大伟, 胡欣欣, 等. 印染废水处理技术研究进展探析[J]. 环境科学与管理, 2015, 40(2) : 74-80.
[2] 杨少红. 印染行业废水特征及处理工艺应用探讨[J]. 环境影响评价, 2016, 38(1): 69-71.
[3] 潘铁山, 徐静, 接晓婷. 组合工艺处理不同浓度印染废水的研究进展[J]. 江西化工, 2018, (5): 9-13.
[4] KATHERESAN V, KANSEDO J, LAU S Y. Efficiency of various recent wastewater dye removal methods: A review[J]. Journal of Environmental Chemical Engineering, 2018, 6(4): 4676-97.
[5] 姜金宏, 何席伟, 熊晓敏, 等. 纺织印染废水毒性特征与控制技术研究进展[J]. 工业水处理, 2021, 6(41): 77-87.
[6] 薛罡. 印染废水治理技术进展[J]. 工业水处理, 2021, 41(9): 10-17.
[7] A. Sonune and R. Ghate, “Developments in wastewater treatment methods,”Desalination, vol. 167, pp. 55-63, 2004.
[8] T. Robinson, B. Chandran, and P. Nigam, “Studies on desorption of individual textile dyes and a synthetic dye effluent from dye-adsorbed agricultural residues using solvents,”Bioresource technology, vol. 84, no. 3, pp. 299-301, Septemer 2002.
[9] 张颖, 李光明, 陈玲, 等. 活性炭再生技术的发展[J]. 化学世界, 2001(8): 441-444.
[10] 邱立平, 陈京英, 刘永正, 等. 曝气生物滤池处理机理及反冲洗控制研究进展[J]. 济南大学学报(自然科学版), 2010, 24( 2): 216-220.
[11] 代学民, 李亚楠, 任淑萍. 曝气生物滤池深度处理印染废水技术研究现状及发展趋势[J]. 染整技术, 2017, 39(7): 53-56.
[12] 赵耀阳, 王语嫣, 陈红兵, 等. 曝气生物滤池影响因素及脱氮除磷研究进展[J]. 广东化工, 2024, 51(18): 132-134.
[13] 唐国民, 李良玉, 宋晶晶, 等. 过氧化氢/臭氧-曝气生物滤池深度处理造纸废水生化出水[J]. 中国造纸, 2023, 42(11): 91-95.
[14] 凌晨, 宁洪良, 赵立新, 等.串联曝气生物滤柱对麦芽酚废水深度净化研究[J]. 天津理工大学学报, 2023, 39(05): 15-20.
[15] 杨明, 刘琪, 孙健, 等. 印染废水深度处理研究及应用进展[J]. 净水技术, 2020, 39(10): 109-115.
[16] 麦建波, 江栋, 范远红, 等. 我国环保新常态下的印染废水提标改造现状与趋势[J]. 染整技术, 2016, 38(2): 58-61.
[17] 罗丹, 郭丽潇, 郝全爱, 等. 芬顿氧化法处理氧化性泡沫去污废液中的有机物[J]. 核化学与放射化学, 2024, 46(02): 170-176.
[18] 宋继梅. 光催化降解处理印染废水研究进展[J]. 印染助剂, 2018, 35(9): 5-9.
[19] 杨烨鹏, 李懿舟, 王家强, 等. 光催化技术在处理废水中的规模化应用[J]. 云南大学学报(自然科学版), 2019, 41(3): 565-571.
[20] 景新军, 蔡大牛, 李斌等. 印染废水深度处理技术进展[J]. 水处理技术, 2022, 6(48): 13-19.
[21] 陈广华. 臭氧深度处理印染废水工程实例[J]. 染整技术, 2019, 041(003): 59-61.
[22] 杨尚源, 林靖华, 黄燕, 等. 电解催化氧化法废水处理机制研究[J]. 环境工程学报, 2017, 11(1) : 237-243.
[23] 新疆纺织印染工业废水排放与综合利用模式探讨[J]. 新疆环境保护, 2020, 42(3): 40-45.
[24] Balapure K, Jain K, Bhatt N, et al. Exploring bioremediation strategies to enhance the mineralization of textile industrial wastewater through sequential anaerobic-microaerophilic process[J]. International Biodeterioration & Biodegradation, 2016, 106: 97-105.
[25] Sponza D T. Necessity of toxicity assessment in Turkish industrial discharges(Examples from metal and textile industry effluents)[J]. Environmental Monitoring and Assessment, 2002, 73(1): 41-66.
[26] Akhtar M F, Ashraf M, Javeed A, et al. Toxicity appraisal of untreated dyeing industry wastewater based on chemical characterization and short term bioassays[J]. Bulletin of Environmental Contamination and Toxicology, 2016, 96(4): 502-507.
[27] Balapure K, Jain K, Bhatt N, et al. Exploring bioremediation strategies to enhance the mineralization of textile industrial wastewater through sequential anaerobic-microaerophilic process[J]. Internationa Biodeterioration & Biodegradation, 2016, 106: 97-105.
[28] Liang Jieying, Ning Xunan, Sun Jian, et al. Toxicity evaluation of textile dyeing effluent and its possible relationship with chemical oxygen demand[J]. Ecotoxicology and Environmental Safety, 2018, 166: 56-62.
[29] Croce R, Cina F, Lombardo A, et al. Aquatic toxicity of several textile dye formulations: Acute and chronic assays with Daphnia magna and Raphidocelis subcapitata[J]. Ecotoxicology and Environmental Safety, 2017, 144: 79-87.
[30] Tkaczyk A, Mitrowska K, Posyniak A. Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review[J]. Science of the Total Environment, 2020, 717:19.
[31] Tara N, Iqbal M, Khan Q M, et al. Bioaugmentation of floating treatment wetlands for the remediation of textile effluent[J]. Water Environment Journal, 2019, 33(1): 124-134.
[32] Sreedharan V, Krithishna K V, Nidheesh P V. Removal of chromium and iron from real textile wastewater by sorption on soils[J]. Journal of Hazardous Toxic and Radioactive Waste, 2017, 21(4): 6017002.
[33] Ghorbani M, Eisazadeh H. Removal of COD, color, anions and heavy metals from cotton textile wastewater by using polyaniline and polypyrrole nanocomposites coated on rice husk ash [J]. Composites Part B-Engineering, 2013, 45(1):1-7.
[34] Mubashar M, Naveed M, Mustafa A, et al. Experi mental investigation of Chlorella vulgaris and Enterobacter sp. MN17 for decolorization and removal of heavy metals from textile wastewater[J]. Water, 2020, 12(11):2-5.
[35] Abu-Ghunmi L N, Jamrah A I. Biological treatment of textile wastewater using sequencing batch reactor technology[J]. Environmental Modeling & Assessment, 2006, 11(4): 333-343.
[36] Prabha S, Ramanathan A L, Gogoi A, et al. Suitability of conventional and membrane bioreactor system in textile mill effluent treatment[J]. Desalination and Water Treatment, 2015, 56(1): 14-23.
[37] 李琦. 水体中重金属(Cu2+、Cr6+和Cd2+)联合对斑马鱼成鱼的生物毒性效应[D]. 山东: 山东农业大学,2023.
[38] 赵霞, 罗培松, 相巧明. 绍兴市典型印染废水中重金属锑排放现状及排放源调查[J]. 中国环境监测, 2016, (14): 91-97.
[39] 国家环境保护部. 纺织染整工业水污染物排放标准, GB4287-2012[S]. 北京: 中国标准出版社, 2012.
[40] 杨永利. 浅谈纺织印染助剂中的非离子表面活性剂的生产工艺[J]. 中国科技博览, 2016(2): 73-73.
[41] 徐世美, 张淑芬, 杨锦宗. 表面活性剂在纺织染整中的应用[J]. 日用化学品科学, 2002(6): 18-23.
[42] He Xiwei, Qi Zhaodong, Gao Jie, et al. Nonylphenol ethoxylates biodegradation increases estrogenicity of textile wastewater in biological treatment systems[J]. Water Research, 2020, 184: 116137.
[43] Villegas-Navarro A, Gonzaiez M C R, Lopez E R. Evaluation of Daphnia magna as an indicator of toxicity and treatment efficacy of textile wastewaters[J]. Environment International, 1999, 25(5): 619-624.
[44] 李磊, 蒋玫, 沈新强, 等. 印染排放尾水对几种海洋生物幼体的毒性研究[J]. 上海海洋大学学报, 2015(24): 712-718.
[45] 国家环境保护局. 污水综合排放标准, GB 8978-1996[S]. 北京: 中国标准出版社, 1996.