[email protected]

物理科学与技术研究

Physical Sience and Technical Research

您当前位置:首页 > 精选文章

Physical Sience and Technical Research. 2024; 4: (1) ; 10.12208/j.pstr.20240006 .

From macro to quantum scale: progress and applications of magnetic materials research
磁性材料研究的进展与应用

作者: 王昕 *

南京理工大学 江苏南京

*通讯作者: 王昕,单位:南京理工大学 江苏南京;

引用本文: 王昕 磁性材料研究的进展与应用[J]. 物理科学与技术研究, 2024; 4: (1) : 34-41.
Published: 2024/6/28 9:45:15

摘要

本文回顾并展望了磁性材料从宏观到量子尺度的研究进展与应用。首先,文章梳理了磁性材料的历史脉络,探讨了磁性材料的制备技术革新与性能优化策略,特别是稀土永磁材料矫顽力的显著提升以及纳米复合技术的创新应用。进入纳米尺度领域,分析了纳米磁性材料的先进合成方法及其展现的量子效应,同时介绍了量子尺度磁性材料的前沿理论模型及其在实验中的验证情况。此外,文章还广泛讨论了磁性材料在信息技术、生物医学等多个领域的实际应用,并展望了未来研究的方向与挑战,特别强调了环境保护与可持续发展的重要性。最后,文章高度肯定了磁性材料与其他学科交叉融合的价值,特别是在量子计算领域,磁性材料作为量子比特展现出的巨大潜力,为未来科技发展提供了新的可能。

关键词: 磁性材料;稀土永磁材料;纳米磁性材料

Abstract

This article reviews and looks forward to the research progress and applications of magnetic materials from macro to quantum scales. First, the article combs the historical context of magnetic materials and discusses the preparation technology innovation and performance optimization strategies of magnetic materials, especially the significant improvement in the coercivity of rare earth permanent magnet materials and the innovative application of nanocomposite technology. Entering the nanoscale field, the advanced synthesis methods of nanomagnetic materials and the quantum effects they exhibit are analyzed. At the same time, the cutting-edge theoretical models of quantum-scale magnetic materials and their verification in experiments are introduced. In addition, the article also extensively discusses the practical applications of magnetic materials in information technology, biomedicine and other fields, and looks forward to future research directions and challenges, with special emphasis on the importance of environmental protection and sustainable development. Finally, the article highly affirms the value of cross-integration of magnetic materials with other disciplines, especially in the field of quantum computing. The great potential of magnetic materials as qubits provides new possibilities for future technological development.

Key words: Magnetic materials; Rare earth permanent magnet materials; Nanomagnetic materials

参考文献 References

[1] 徐成,杨潇,李双峰,等.1:12型稀土铁基永磁材料研究进展[J].磁性材料及器件, 2023, 54(4):107-119.

[2] 屈凯,刘国征.稀土磁性材料研究进展[J].稀土信息, 2023(10):29-34.

[3] 张仿贤.稀土磁性材料的矫顽力调控研究[D].杭州电子科技大学,2023.

[4] 闫阿儒,贾智,曹帅,等.高丰度稀土永磁材料的研究进展与展望[J].中国稀土学报, 2023.

[5] 肖滕龙,吕贵红,马峥,等.稀土永磁材料的氧化和腐蚀防护研究进展[J].稀土, 2024(001):045.

[6] 金延.稀土永磁材料的应用技术[J].金属功能材料, 2023, 30(1):9.

[7] 梁志奇,张志力.双功能复合材料Fe3O4@Y2O2S:Eu~(3+)的制备,磁性和发光性的研究[C]//中国稀土学会第四届青年学术会议摘要集.2023.

[8] 杨瑞龙,张钰樱.化学气相沉积法制备二维Cr_(2)S_(3)纳米片及其磁性研究[J].材料工程, 2023, 51(1):9.

[9] 王艳红,符鹏,卢红成.一维量子反铁磁性材料研究简介[J].铸造技术, 2023, 44(1):9.

[10] 徐星星,朱宏.磁性纳米颗粒及其在生物医学领域中的应用[J].磁性材料及器件, 2010, 41(5):6.

[11] Chaudhary, V., et al. "Additive manufacturing of magnetic materials." Progress in Materials Science 114 (2020): 100688.

[12] Serrano, Diego, et al. "Why magnet: Quantifying the complexity of modeling power magnetic material characteristics." IEEE Transactions on Power Electronics (2023).

[13] Chaudhary, V., et al. "Additive manufacturing of magnetic materials." Progress in Materials Science 114 (2020): 100688.

[14] Avasthi, Ashish, et al. "Magnetic nanoparticles as MRI contrast agents." Surface-modified nanobiomaterials for electrochemical and biomedicine applications (2020): 49-91.

[15] Merazzo, K. J., et al. "Magnetic materials: A journey from finding north to an exciting printed future." Materials Horizons 8.10 (2021): 2654-2684.

[16] Neolaka, Yantus AB, et al. "Evaluation of magnetic material IIP@ GO-Fe3O4 based on Kesambi wood (Schleichera oleosa) as a potential adsorbent for the removal of Cr (VI) from aqueous solutions." Reactive and Functional Polymers 166 (2021): 105000.

[17] Fallarino, Lorenzo, Brian J. Kirby, and Eric E. Fullerton. "Graded magnetic materials." Journal of Physics D: Applied Physics 54.30 (2021): 303002.

[18] Subramanian, AT Sankara, et al. "A review on selection of soft magnetic materials for industrial drives." Materials Today: Proceedings 45 (2021): 1591-1596.

[19] Nithya, Rajarathinam, et al. "Magnetic materials and magnetic separation of dyes from aqueous solutions: a review." Environmental Chemistry Letters 19.2 (2021): 1275-1294.

[20] Hojjati-Najafabadi, Akbar, et al. "A review on magnetic sensors for monitoring of hazardous pollutants in water resources." Science of The Total Environment 824 (2022): 153844.

[21] Liu, Mingyue, et al. "Recent advances of magnetite (Fe3O4)-based magnetic materials in catalytic applications." Magnetochemistry 9.4 (2023): 110.

[22] Mohapatra, Jeotikanta, et al. "Hard and semi-hard magnetic materials based on cobalt and cobalt alloys." Journal of Alloys and Compounds 824 (2020): 153874.

[23] Jakubovics, John Paul. Magnetism and magnetic materials. CRC Press, 2023.

[24] Bernot, Kevin, et al. "A journey in lanthanide coordination chemistry: from evaporable dimers to magnetic materials and luminescent devices." Accounts of Chemical Research 54.2 (2021): 427-440.

[25] Alexander, Vetcher, et al. "A composite magnetic material with insulating anticorrosive coatings." Machines. Technologies. Materials. 14.7 (2020): 296-298.

[26] Nguyen, Duytrinh, et al. "Applying fuzzy grey relationship analysis and Taguchi method in polishing surfaces of magnetic materials by using magnetorheological fluid." The International Journal of Advanced Manufacturing Technology 112 (2021): 1675-1689.