[email protected]

工程学研究

Journal of Engineering Research

您当前位置:首页 > 精选文章

Journal of Engineering Research. 2024; 3: (2) ; 10.12208/j.jer.20240019 .

Deep integration of electric vehicle technological innovation and transportation engineering transformation
电动汽车技术革新与交通工程变革的深度融合

作者: 朱凯 *

河北工业大学 天津

*通讯作者: 朱凯,单位:河北工业大学 天津;

引用本文: 朱凯 电动汽车技术革新与交通工程变革的深度融合[J]. 工程学研究, 2024; 3: (2) : 29-38.
Published: 2024/7/28 16:48:35

摘要

本文深入探讨了电动汽车技术的革新与交通工程变革之间的紧密融合。文章首先指出,全球电动汽车市场正经历迅猛增长,其中中国、欧洲和美国构成了主要的增长引擎。技术进步,例如高效永磁同步电机和自动驾驶技术的演进,显著提升了电动汽车的性能,并促进了行业的转型。充电基础设施的布局,特别是充电站和换电站的建设,以及与智能电网的整合,已成为基础设施需求变化的核心。公共交通系统的电动化转型,得益于政策的推动和技术创新,不仅提高了运营效率,也增强了环保性能。电动汽车在能源利用和环境保护方面做出了显著贡献,通过减少对化石燃料的依赖和降低碳排放,有效改善了空气质量。智能化的发展趋势,包括自动驾驶技术的运用和用户体验的提升,正在重塑出行模式。文章还分析了电动汽车所面临的挑战,包括电池续航里程和充电效率问题,以及废旧电池的回收与再利用技术。最终,文章强调了国际合作在全球交通可持续发展进程中的关键作用。

关键词: 电动汽车;技术革新;交通工程

Abstract

This article delves into the close integration between innovations in electric vehicle technology and changes in transportation engineering. The article first points out that the global electric vehicle market is experiencing rapid growth, with China, Europe and the United States forming the main growth engines. Technological advances, such as high-efficiency permanent magnet synchronous motors and the evolution of autonomous driving technology, have significantly improved the performance of electric vehicles and contributed to the transformation of the industry. The layout of charging infrastructure, especially the construction of charging stations and battery swap stations, as well as integration with smart grids, have become the core of changes in infrastructure demand. The electrification transformation of the public transportation system, thanks to policy promotion and technological innovation, not only improves operational efficiency, but also enhances environmental protection performance. Electric vehicles have made significant contributions to energy utilization and environmental protection, effectively improving air quality by reducing dependence on fossil fuels and lowering carbon emissions. The development trend of intelligence, including the application of autonomous driving technology and the improvement of user experience, is reshaping travel patterns. The article also analyzes the challenges faced by electric vehicles, including battery range and charging efficiency issues, as well as the recycling and reuse technology of used batteries. Ultimately, the article highlights the key role of international cooperation in the sustainable development of global transportation.

Key words: Electric vehicles; Technological innovation; Traffic engineering

参考文献 References

[1] Ehsani, Mehrdad, et al. "State of the art and trends in electric and hybrid electric vehicles." Proceedings of the IEEE 109.6 (2021): 967-984.

[2] Li, Zhenhe, Amir Khajepour, and Jinchun Song. "A comprehensive review of the key technologies for pure electric vehicles." Energy 182 (2019): 824-839.

[3] Husain, Iqbal, et al. "Electric drive technology trends, challenges, and opportunities for future electric vehicles." Proceedings of the IEEE 109.6 (2021): 1039-1059.

[4] Sharma, Snigdha, Amrish K. Panwar, and M. M. Tripathi. "Storage technologies for electric vehicles." Journal of traffic and transportation engineering (english edition) 7.3 (2020): 340-361.

[5] Sharma, Snigdha, Amrish K. Panwar, and M. M. Tripathi. "Storage technologies for electric vehicles." Journal of traffic and transportation engineering (english edition) 7.3 (2020): 340-361.

[6] Kapustin, Nikita O., and Dmitry A. Grushevenko. "Long-term electric vehicles outlook and their potential impact on electric grid." Energy Policy 137 (2020): 111103.

[7] Deng, Jie, et al. "Electric vehicles batteries: requirements and challenges." Joule 4.3 (2020): 511-515.

[8] Singh, Krishna Veer, Hari Om Bansal, and Dheerendra Singh. "A comprehensive review on hybrid electric vehicles: architectures and components." Journal of Modern Transportation 27.2 (2019): 77-107.Galus, Matthias D., et al. "The role of electric vehicles in smart grids." Advances in Energy Systems: The Large‐scale Renewable Energy Integration Challenge (2019): 245-264.

[9] Muthukumar, M., et al. "The development of fuel cell electric vehicles–A review." Materials Today: Proceedings 45 (2021): 1181-1187.

[10] Liu, Chunhua, et al. "A critical review of advanced electric machines and control strategies for electric vehicles." Proceedings of the IEEE 109.6 (2020): 1004-1028.

[11] Muratori, Matteo, et al. "The rise of electric vehicles—2020 status and future expectations." Progress in Energy 3.2 (2021): 022002.

[12] 刘昊,郑泽东,李永东,等.电动汽车V2G技术在城市轨道交通牵引系统中的应用[J].控制与信息技术, 2018(5):6.

[13] 葛显龙,王博,杨育树,等.考虑出行特征的电动汽车协同充电调度优化研究[J].交通运输系统工程与信息, 2024, 24(1):240-252. 

[14] 景鹏,蔡云昊,孙慧倩,等.高油价能否促进消费者购买新能源汽车[J].交通运输工程与信息学报, 2022, 20(4):18.

[15] 邵萍,杨之乐,李慷,等.基于用户意愿的电动汽车备用容量多目标优化[J].上海交通大学学报, 2023, 57(11):1501-1511.

[16] 刘颖琦,王萌,王静宇.中国新能源汽车市场预测研究[J].  2021(2016-4):86-91.

[17] 席利贺,张欣,吴建政,等.基于动态规划与神经网络的增程式电动汽车能量管理策略研究[J].公路交通科技, 2018, 35(9):9.

[18] 马舒予,胡路,吴佳媛,等.共享电动汽车系统车队规模与停车泊位数优化[J].交通运输工程与信息学报, 2022(003):020.

[19] 王震坡.双碳目标下电动汽车有序充电与车网互动技术研究[J].电力工程技术, 2021, 040(005):P.1-1.

[20] 贾鉴,陈芳芳,应飞祥,等.考虑配电网和交通网的电动汽车充电站规划研究[J].电工技术, 2019(16):4.

[21] Verma, Shrey, Gaurav Dwivedi, and Puneet Verma. "Life cycle assessment of electric vehicles in comparison to combustion engine vehicles: A review." Materials Today: Proceedings 49 (2022): 217-222.

[22] Xing, Jianwei, Benjamin Leard, and Shanjun Li. "What does an electric vehicle replace?." Journal of Environmental Economics and Management 107 (2021): 102432.

[23] Sun, Peiyi, et al. "A review of battery fires in electric vehicles." Fire technology 56.4 (2020): 1361-1410.