[email protected]

物理科学与技术研究

Physical Sience and Technical Research

您当前位置:首页 > 精选文章

Physical Sience and Technical Research. 2024; 4: (1) ; 10.12208/j.pstr.20240001 .

Proof of amplification principle for mass production of nanoclusters by cluster technology
簇束技术大规模生产纳米团簇的放大原理证明

作者: 辛骅1, 白伟1, 杜启帆1, 韩玉冰2, 王佳2, 刘红宇2, 殷浩华2, 陆大春2 *

1 陕西科技大学机电工程学院 陕西西安

2 扩维原子有限公司,广东省深圳市鸿创科技中心 广东深圳

*通讯作者: 陆大春,单位: 扩维原子有限公司,广东省深圳市鸿创科技中心 广东深圳;

引用本文: 辛骅, 白伟, 杜启帆, 韩玉冰, 王佳, 刘红宇, 殷浩华, 陆大春 簇束技术大规模生产纳米团簇的放大原理证明[J]. 物理科学与技术研究, 2024; 4: (1) : 1-6.
Published: 2024/6/28 15:26:16

摘要

本文介绍了一种基于团簇束技术的纳米团簇量产设备。该项技术通过对磁控溅射阴极和电源、喷嘴和撇油器、离子光学器件、四弯、差分沉积等各种关键部件进行工程线性放大,从而实现簇束通量的放大。展示了Ag、Cu和Ni纳米团簇的大规模生产(克/小时),具有狭窄的尺寸分布和良好的球形分布。这种方法可以应用于65种元素,也与合金和化合物相容,这为大量无配体纳米团簇的一般合成提供了一条新途径,适用于科学研究、化学、能源、半导体和生物医学等应用。

关键词: 纳米团簇;磁控溅射;离子光学;质量选择

Abstract

In this paper, a mass production device for nanoclusters based on cluster beam technology is introduced. By engineering linear amplification of various key components such as magnetron sputtering cathode and power supply, nozzles and skimmers, ion optics, four-bend and differential deposition, the amplification of cluster flux is realized. Large-scale production of Ag, Cu and Ni nanoclusters (g/h) with narrow size distribution and good spherical distribution was demonstrated. This method, which can be applied to 65 elements and is also compatible with alloys and compounds, provides a new route for the general synthesis of large numbers of ligand-free nanoclusters for applications such as scientific research, chemistry, energy, semiconductors and biomedicine.

Key words: Nanoclusters; Magnetron sputtering; Ion optics; Quality selection

参考文献 References

[1] R. Berry, The 13th International Symposium on Small Particles and Inorganic Clusters (ISSPIC-13) Report, July 2006.

[2] A. W. Castleman, Jr. and S. N. Khanna, J. Phys. Chem. C. 113, 2664 (2009).

[3] Z. A. Piazza, H. S. Hu, W. L. Li, Y. F. Zhao, J. Li and L. S. Wang, Nat. Commun. 5, 3113 (2014).

[4] J. Oliver-meseguer, J. R. Cabrero-antonino, I. Domínguez, A. Leyva-pérez, and A. Corma, Science 338, 1452 (2012).

[5] D. Yang, W. Pei, S. Zhou, J. J. Zhao, W. P. Ding and Y. Zhu, Angew. Chem. 59, 1919 (2020).

[6] P. J. Roach, A. C. Reber, W. H. Woodward, S. N. Khanna and A. W. Castleman Jr, PNAS 104, 14565 (2007).

[7] X. X. Zhang, Y. Wang, H. P. Wang, A. Lim, G. Gantefoer, K. H. Bowen, J. U. Reveles and S. N. Khanna, J. Am. Chem. Soc. 135, 4856 (2013).

[8] R. Moro, X. S. Xu, S. Y. Yin, and W. A. de Heer, Science 300, 1265 (2003).

[9] R. Moro, S. Y. Yin, X. S. Xu, and W. A. de Heer, Phys. Rev. Lett. 93, 086803 (2004).

[10] A. Halder, A. Liang, and V.V.Kresin,Nano Lett. 15,1410 (2015).

[11] J.A. Scholl,A.L. Koh and J. A. Dionne, Nature 483, 421 (2012).

[12] X. J. Wang, B. Yin, L.R.Jiang, C.Yang,Y.Liu,G.Zou, S.Chen, M.Z.Zhu, Science 381,784(2023).

[13] J.J.de Pablo, N.E.Jackson, M.A.Webb,L.Q.Chen,J.E. Moore,D. Morgan, R. Jacobs, T. Pollock, D. G. Schlom, E. S. Toberer, J. Analytis, I. Dabo, D. M. DeLongchamp, G. A. Fiete, G. M. Grason, G. Hautier, Y. F. Mo, K. Rajan, E. J. Reed, E. Rodriguez, V. Stevanovic, J. Suntivich, K. Thornton and J. C. Zhao, Npj Comput. Mater. 5, 41 (2019).

[14] W. A. De Heer, Rev. Mod. Phys. 65, 611 (1993).

[15] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl and R. E. Smalley, Nature 318, 162 (1985).

[16] P. R. Ellis, C. M. Brown, P. T. Bishop, J. L. Yin, K. Cooke, W. D. Terry, J. Liu, F. Yin and R. E. Palmer, Faraday Discuss. 188, 39 (2016).

[17] H. Haberland, M. Karrais, and M. Mall, Zeitschrift für Physik D Atoms, Molecules and Clusters 20, 413 (1991).

[18] C. H. Zhang, H. Tsunoyama, H. Akatsuka, H. Sekiya, T. Nagase and A. Nakajima, 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems 428-431 (2013). 

[19] M. D. Morse, “Supersonic beam sources,” in Methods of Experimental Physics: Atomic, Molecular, and Optical Physics,Vol II. Atoms and Molecules, edited by F. B. Dunning and R. Hulet (Academic Press, Inc., Orlando, Florida, 1996).

[20] B. V. Issendorff and R. Palmer, Rev. Sci. Instrum. 70, 4497 (1999).

[21] S. Pratontep, S. Carroll, C. Xirouchaki, M. Streun and R. Palmer, Rev. Sci. Instrum. 76, 45103 (2005).

[22] R. E. Palmer, L. Cao, and F. Yin, Rev. Sci. Instrum. 87, 046103 (2016).

[23] A. N. Banerjee, C. K. Ghosh, K. K. Chattopadhyay, H. Minoura, A. K. Sarkar, A. Akiba, A. Kamiya, T. Endo, Thin Solid Films, 496, 112 (2005).

[24] R. E. Palmer, R. S. Cai, and J. Vernieres, Acc. Chem. Res. 51, 2296 (2018).

[25] S. R. Plant, L. Cao and R. E. Palmer, J. Am. Chem. Soc. 136, 7559 (2014).

[26] Z. Wang and R. Palmer, Nano Lett. 12, 91 (2012). 

[27] Z. Wang and R. Palmer, Phys. Rev. Lett. 108, 245502 (2012).

[28] S. Q. Lu, K. J. Hu, Z. W. Zuo, S. Y. Hu, G. H. Wang, F. Q. Song and L. Cao, Nanoscale Adv. 2, 2720 (2020).

[29] R. E. Palmer, A. P. G. Robinson, and Q. Guo, ACS Nano 7, 6416 (2013).

[30] F. Greco, A. Bellacicca, M. Gemmi, V. Cappello, V. Mattoli, and P. Milani, ACS Appl. Mater. Interfaces 7, 7060 (2015).

[31] P. Hernandez-Fernandez, F. Masini, D. N. Mccarthy, C. E. Strebel, D. Friebel, D. Deiana, P. Malacrida, A. Nierhoff, A. Bodin, A. Wise, J. Nieisen, T. Hansen, A. Nilsson, I. Stephens, and I. Chorkendorff, Nat. Chem. 6, 732 (2014).

[32] E. C. Tyo and S. Vajda, Nat. Nanotechnol. 10, 577 (2015).

[33] M. T. Qureshi, S. H. Baker, C. Binns, M. Roy, S. Laureti, D. Fiorani, and D. Peddis, J. Magn. Magn. Mater. 378, 345 (2015).

[34] C. Leung, C. Xirouchaki, N. Berovic, and R. E. Palmer, Adv. Mater. 16, 223 (2004).