[email protected]

物理科学与技术研究

Physical Sience and Technical Research

您当前位置:首页 > 精选文章

Physical Sience and Technical Research. 2024; 4: (1) ; 10.12208/j.pstr.20240003 .

Desktop cluster beam source with high atomic precise mass resolution
高原子质量分辨率的桌面级纳米团簇源

作者: 辛骅1, 杜启帆1, 白伟1, 韩玉冰2, 王佳2, 刘红宇2, 殷浩华2, 陆大春2 *

1 陕西科技大学机电工程学院 陕西西安

2 扩维原子有限公司,广东省深圳市鸿创科技中心 广东深圳

*通讯作者: 陆大春,单位: 扩维原子有限公司,广东省深圳市鸿创科技中心 广东深圳;

引用本文: 辛骅, 杜启帆, 白伟, 韩玉冰, 王佳, 刘红宇, 殷浩华, 陆大春 高原子质量分辨率的桌面级纳米团簇源[J]. 物理科学与技术研究, 2024; 4: (1) : 17-23.
Published: 2024/6/28 14:58:41

摘要

本文报告了一种基于磁控溅射、气体冷凝、离子光学和质量选择组合的桌面级纳米团簇制备源,该源能够精确控制纳米团簇的原子数。磁控溅射技术用于气化靶材,可适用于周期表中的65种以上元素,同时也兼容合金和化合物。纳米团簇在液氮冷却环境下,通过氩气和氦气的冷凝作用形成。该团簇源结合离子光学系统和改进的横向多振荡飞行时间质谱仪,能够制备出尺寸范围从2个原子到不少10万个原子的纳米团簇,且保持恒定的质量分辨率(M/dM>30)。通过优化,离子光学系统和质谱仪的尺寸显著减小,使得团簇束源从大型综合设备转变为桌面级紧凑装置,大大降低了制造成本。

关键词: 磁控溅射;气体冷凝;离子光学;质量选择

Abstract

We report on a desktop source for producing atomic number precise nanocluster based on the combination of magnetron sputtering, gas condensation, ion optics and mass filter. The use of magnetron sputtering to vaporize a target is applicable to more than 65 elements in the periodic table, also compatible with alloys and compounds. Nanoclusters are formed by condensation with Ar and He gases in a liquid nitrogen cooling environment. The source, combined with ion optics and a modified lateral multi-oscillating time-of-flight mass filter, can produce nanoclusters in the size range from 2 up to at least 100,000 atoms with a constant mass resolution (M/dM>30). By optimizing the dimensions of the ion optics and mass filter, the cluster beam source has been significantly downsized, transforming it from a large, comprehensive piece of equipment to a compact desktop device, thereby significantly reducing manufacturing costs.

Key words: Magnetron sputtering; Gas condensation; Ion optics; Quality selection

参考文献 References

[1] T. P. Martin, Phys. Rep. 273, 199 (1996).

[2] R. L. Johnston, Atomic and molecular clusters, CRC Press (2002).

[3] W. A. De Heer, Rev. Mod. Phys. 65, 611 (1993).

[4] J. Wang, G. Wang and J. Zhao, Phys. Rev. B. 66, 035418 (2002).

[5] F. Baletto and R. Ferrando, Rev. Mod. Phys. 77, 371 (2005).

[6] A. Y. Tsivadze, G. Ionova, V. Mikhalko, I. Ionova and G. Gerasimova, Prot. Met. Phys. Chem. Surf. 49, 166 (2013).

[7] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl and R. E. Smalley, Nature 318, 162 (1985).

[8] H. Hakkinen, M. Moseler and U. Landman, Phys. Rev. Lett. 89, 033401 ( 2002)

[9] S. Bulusu, X. Li, L.-S. Wang and X. C. Zeng, Proc. Natl. Acad. Sci. U. S. A. 103, 8326 (2006).

[10] J. Li, X. Li, H. J. Zhai and L. S. Wang, Science 299, 864 (2003).

[11] C. L. Cleveland, U. Landman, T. G. Schaaff, M. N. Shafigullin, P. W. Stephens, and R. L. Whetten, Phys. Rev. Lett. 79, 1873 (1997).

[12] N. Shao, W. Huang, Y. Gao, L. M. Wang, X. Li, L. S. Wang, and X. C. Zeng, J. Am. Chem. Soc. 132, 6596 (2010).

[13] A. Halder, A. Liang, and V. V. Kresin, Nano Lett. 15, 1410 (2015).

[14] P. J. Roach, A. C. Reber, W. H. Woodward, S. N. Khanna and A. W. Castleman, Jr. PNAS 104, 14565 (2007).

[15] S. Hei Yau, O. Varnavski, and T. Goodson III, Acc. Chem. Res. 46, 1506 (2013).

[16] G. Ramakrishna, O. Varnavski, J. Kim and D. Lee, Theodore Goodson Linear and Nonlinear Optics of Organic Materials VIII 70490L (2008).

[17] S. Knoppe, H. Häkkinen, and T. Verbiest, J. Phys. Chem. C 119, 6221 (2015).

[18] A. Bongiorno and U. Landman, Phys. Rev. Lett. 95, 106102 (2005).

[19] R. F. Haglund, L. Yang, R. H. Magruder, J. E. Wittig, K. Becker, and R. A. Zuhr, Opt. Lett. 18, 373 (1993).

[20] C. O. Baker, B. Shedd, R. J. Tseng, A. A. Martinez-Morales, C. S. Ozkan, M. Ozkan, Y. Yang and Richard B. Kaner, ACS Nano 5, 3469 (2011).

[21] H. Haberland, M. Karrais and M. Mall, Z Phys D - Atoms, Molecules and Clusters 20, 413 (1991).

[22] J.A. Northby, T. Jiang, G.H. Takaoka , I. Yamada , W. L. Brown and M. Sosnowski, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 74, 336 (1993).

[23] N. Toyoda, J. Matsuo and I. Yamada, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 79, 223 (1993).

[24] I. Yamada, J. Matsuo, N. Toyoda and A. Materials Science and Engineering: R: Reports 34, 231 (2001).

[25] C. Yin, E. Tyo; K. Kuchta, B. V. Issendorff and S. Vajda, J. Chem. Phys. 140, 174201 (2014).

[26] N. Toyoda, S. Houzumi and I. Yamada, Nuclear Instruments and Methods in Physics Research B 242, 466 (2006).

[27] S. Vajda and Michael G. White, ACS Catal. 5, 7152 (2015).

[28] I. M. Goldby, B. V. Issendorff, L. Kuipers and R. E. Palmer, Rev. Sci. Instrum. 68, 3327 (1997).

[29] B. V. Issendorff and R. Palmer, Rev. Sci. Instrum. 70, 4497 (1999).

[30] S. Pratontep, S. Carroll, C. Xirouchaki, M. Streun and R. Palmer, Rev. Sci. Instrum. 76, 45103 (2005). 

[31] Z. W. Wang and R. E. Palmer, Phys. Rev. Lett. 108, 245502 (2012).

[32] S. R. Plant, L. Cao, and R. E. Palmer, J. Am. Chem. Soc. 136, 7559 (2014).