Physical Sience and Technical Research
Physical Sience and Technical Research. 2024; 4: (1) ; 10.12208/j.pstr.20240005 .
总浏览量: 228
深圳扩维原子科技有限公司 广东深圳
*通讯作者: 蒋衡,单位:深圳扩维原子科技有限公司 广东深圳;
Wehnelt离子透镜是横向压缩离子束的主要技术手段,在获得高分辨、高质量聚焦离子束方面起着关键作用。针对高通量氩离子束的传输与聚焦过程,离子束流传输速率的提升,本文设计了一种用于聚焦高通量氩离子束流的wehnelt离子透镜,并采用SIMION仿真模拟软件对离子的命中区域进行了研究。研究结果表明,通过合理布局透镜结构与电压配置,能够使得72%(2 keV)或65%(5 keV)的离子聚焦在10mm×10 mm的矩形区域,并且99%以上的离子能够聚焦在20 mm×20 mm的矩形区域。
Wehnelt ion lenses are commonly used techniques for transversely compressing ion beams, playing a crucial role in achieving high-resolution and high-quality focused ion beams. For the enhancement of ion beam current transmission rate in the transport and focusing process of high-throughput argon ion beams, this study designs a wehnelt ion lens specifically for focusing high-throughput argon ion beams. The ion impact area was investigated using SIMION simulation software. By optimizing the lens structure layout and voltage configuration, it was found that 72% (2 keV) or 65% (5 keV) of ions can be focused within a 10 mm × 10 mm rectangular area, and over 99% of ions can be focused within a 20 mm × 20 mm rectangular area.
[1] Awan IZ, Hussain SB, Haq A, et al. Wondrous Nanotechno-logy[J]. JOURNAL OF THE CHEMICAL SOCIETY OF PAKISTAN, 2016, 38(6): 1026-1055.
[2] Payal, Pandey P. Role of Nanotechnology in Electronics: A Review of Recent Developmentsand Patents[J]. Recent Patents on Nanotechnology, 2022, 16(1): 45-66.
[3] Kaloyeros AE, Arkles B. Review-Silicon Carbide Thin Film Technologies: Recent Advances in Processing, Properties, and Applications: Part II. PVD and Alternative (Non-PVD and Non-CVD) Deposition Techniques[J]. ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2024, 13(4): 043001.
[4] Vorobyova M, Biffoli F, Giurlani W, et al. PVD for Decorative Applications: A Review[J]. MATERIALS, 2023, 16(14): 4919.
[5] Cho S, Lee JS, Jang H, et al. Comparative Studies on Crystallinity, Thermal and Mechanical Properties of Polyketone Grown on Plasma Treated CVD Graphene[J]. POLYMERS, 2021, 13(6): 919.
[6] Guo Z, Li C, Zu P, et al. The kinetics of crack propagation in CVD graphene film[J]. DIAMOND AND RELATED MATERIALS, 2022, 126: 109056.
[7] Huang L, Wu H, Cai G, et al. Recent Progress in the Application of Ion Beam Technology in the Modification and Fabrication of Nanostructured Energy Materials[J]. ACS NANO, 2024, 18(4): 2578-2610.
[8] Ghyngazov S, Ovchinnikov V, Kostenko V, et al. Surface modification of ZrO2-3Y2O3 ceramics with continuous Ar<SUP>+</SUP> ion beams[J]. SURFACE & COATINGS TECHNOLOGY, 2020, 388: 125598.
[9] Honey S, Asim J, Ahmad I, et al. Modification in properties of Ni-NWs meshes by Ar+ ions beam irradiation[J]. MATERIALS RESEARCH EXPRESS, 2020, 7(6): 065008.
[10] Liao Y, Su B, Fa T, et al. Etching of Low Energy Argon Ion Beam on Beryllium[J]. RARE METAL MATERIALS AND ENGINEERING, 2023, 52(5): 1610-1615.
[11] Chandrasekaran V, Titze M, Flores ARR, et al. High-Yield Deterministic Focused Ion Beam Implantation of Quantum Defects Enabled by In Situ Photoluminescence Feedback[J]. ADVANCED SCIENCE, 2023, 10(18).
[12] Gupta D, Umapathy GR, Singhal R, et al. Nano-scale depth-varying recrystallization of oblique Ar+ sputtered Si(111) layers[J]. SCIENTIFIC REPORTS, 2020, 10(1).
[13] Prakash J, Samriti, Wijesundera DN, et al. Ion beam nanoengineering of surfaces for molecular detection using surface enhanced Raman scattering[J]. Molecular Systems Design & Engineering, 2022, 7(5): 411-421.
[14] Leveneur J, Zhang Y, Fiedler H, et al. Surface modification of collagen using low-energy noble gas ion implantation[J]. SURFACE & COATINGS TECHNOLOGY, 2023, 468: 129768.
[15] Yoshida R, Hara M, Oguchi H, 等. Micromachined multiple focused-ion-beam devices[J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2016, 34(2): 022001.