[email protected]

电气工程与自动化

Journal of Electrical Engineering and Automation

您当前位置:首页 > 精选文章

Journal of Electrical Engineering and Automation. 2024; 3: (1) ; 10.12208/j.jeea.20240003 .

The leader-following consensus of uncertain multi-agent system under semi-Markov switching in cooperative and competitive networks
基于合作竞争关系的不确定多智能体系统在半马尔可夫切换下的领导跟随一致性研究

作者: 张玲侠 *, 张玉林

重庆城市科技学院 重庆

*通讯作者: 张玲侠,单位:重庆城市科技学院 重庆;

引用本文: 张玲侠, 张玉林 基于合作竞争关系的不确定多智能体系统在半马尔可夫切换下的领导跟随一致性研究[J]. 电气工程与自动化, 2024; 3: (1) : 15-23.
Published: 2024/6/24 16:30:17

摘要

基于合作竞争关系,讨论了不确定多智能体系统在半马尔可夫切换下的领导跟随一致性问题。针对不确定多智能体系统,构造了包含合作竞争关系和半马尔可夫切换拓扑结构以及误差系数的多智能体系统指数均方一致性协议。通过该协议,多智能体系统的领导跟随一致性问题被转换为具有时变延迟的一类马尔可夫跳跃系统的稳定性问题。通过构造李雅普诺夫函数方法和采用弱无穷小算子的方法,推导出稳定性结论。使得系统实现领导跟随指数均方一致性。基于该结论,通过求解线性矩阵不等式来获得控制器增益。仿真实例说明了理论结果的有效性。

关键词: 领导跟随;半马尔可夫切换;合作竞争关系;不确定系统;指数均方一致性

Abstract

Based on cooperative-competitive relation, the leader-following consensus of uncertain multi-agent system (UMAS) under semi-Markov switching has been discussed. For UMAS, an exponential mean-square consensus protocol with cooperative-competitive relation, semi-Markov switching topology and error coefficient has been designed. Through the protocol, the leader-following consensus problem of UMAS can be converted into a stability problem of Markov jump system with a time-varying delay. Stability conclusions have been derived by constructing the Lyapunov function and using the weak infinitesimal operator. This has enabled the system to achieve leader-following exponential average-square consensus. Based on this conclusion, the controller gain has been obtained by solving the linear matrix inequality. Simulation examples illustrate the validity of theoretical results.

Key words: Leader-following; Semi-Markov switching; Cooperative-competitive relation; UMAS; exponen-tial mean-square consensus

参考文献 References

[1] 李成凤,张阳伟,邵俊倩,高亮.多智能体群集系统分群行为研究进展[J/OL].电光与控制:1-8[2022-03-27]. http://202.202.43.73:8000/rwt/CNKI/http/NNYHGLUDN3WXTLUPMW4A/kcms/detail/41.1227.TN.20220301.1716.004.html.

[2] 韩琦,王霞,王慧,袁艺云,曹瑞,翁腾飞.基于事件触发的二阶多智能体时滞一致性[J].重庆工商大学学报(自然科学版2022,39(01):1-8.

[3] L. Ma, Y. -L. Wang and Q. -L. Han, "H∞ Cluster Formation Control of Networked Multiagent Systems With Stochastic Sampling," in IEEE Transactions on Cybernetics, vol. 51, no. 12, pp. 5761-5772, Dec. 2021.

[4] 郑维,张志明,刘和鑫,张明泉,孙富春.基于线性变换的领导-跟随多智能体系统动态反馈均方一致性控制[J/OL].自动化学报:1-12[2022-03-27].

[5] 张振华,彭世国.时延多智能体系统领导跟随一致性研究[J].计算机应用研究,2019,36(05):1333-1337.

[6] 黄红伟,黄天民,吴胜,周坤.基于事件触发的二阶多智能体领导跟随一致性[J].控制与决策,2016,31(05):835-841.

[7] 陈立军,张玉,夏琳琳.领导-跟随多智能体系统有限时间一致性[J].计算机仿真,2018,35(05):274-277+308.

[8] S. Luo, X. Xu, L. Liu and G. Feng, "Leader-Following Consensus of Heterogeneous Linear Multiagent Systems With Communication Time-Delays via Adaptive Distributed Observers," in IEEE Transactions on Cybernetics.

[9] JI Lianghao, YU Xinghuo, LI Chaojie, et al. Group consensus for heterogeneous multiagent systems in the competition networks with input time delays[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, PP(99):1-9.

[10] Dai H, Xie J, Chen W (2019) Event-Triggered Distributed Cooperative Learning Algorithms over Networks via Wavelet Approximation. Neural Process Lett 50: 669-700.

[11] YI Qua, HAO Pengxua, CHENG Song, et al. [J]. Journal of the Franklin Institute, 2020, 357(17): 12109-12124.

[12] PU Xingcheng, ZHAO Longlong, XIONG Chaowen, et al. Weighted group consensus for discrete-Time heterogeneous multi-agent systems in the cooperative-competitive network with time delays[J]. IEEE Access, 2019, 7: 123679-123688.

[13] 刘雨欣,陈霞.基于事件触发的离散多智能体二分一致性[J].计算技术与自动化,2021,40(02):91-98.

[14] 杨洪勇,田生文,张嗣瀛.具有领航者的时延多智能体系统的一致性[J].电子学报,2011,39(04):872-876.

[15] Peng, CHEN Mengyuan, VLADIMIR STOJANOVIC, et al. Asynchronous fault detection filtering for piecewise homogenous markov jump linear systems via a dual hidden markov model[J]. Mechanical Systems and Signal Processing, 2021, 151: 1-12.

[16] S. EICKELER, S. M¨ULLER, G. RIGOLL. Recognition of jpeg compressed face images based on statistical methods[J], Image and Vision Computing, 2007, 18(4): 279-287.

[17] MENG Min, LIU Lu,  FENG Gang, et al. Output consensus for heterogeneous multiagent systems with Markovian switching network topologies[J]. International Journal of Robust & Nonlinear Control, 2018, 28(3): 1049-1061.

[18] LI Mengling, DENG Feiqi. Necessary and sufficient conditions for consensus of continuous-time multiagent systems with markovian switching topologies and communication noises[J]. IEEE Transactions on Cybernetics, 2020, 50(7): 3264-3270.

[19] Q.-L. Han, Absolute stability of time-delay systems with sector-bounded nonlinearity, Automatica 41 (12) (2005) 2171–2176.

[20] X.-M. Zhang, Q.-L. Han, Novel delay-derivative-dependent stability criteria using new bounding techniques, International Journal of Robust and Nonlinear Control 23 (13) (2013) 1419–1432.