[email protected]

物理科学与技术研究

Physical Sience and Technical Research

您当前位置:首页 > 精选文章

Physical Sience and Technical Research. 2024; 4: (1) ; 10.12208/j.pstr.20240002 .

Random Pbifurcation control of vehicle rolling motion system under color noise excitation
色噪声激励下飞行器滚转运动系统的随机P分岔控制

作者: 马小燕 *

北方民族大学数学与信息科学学院 宁夏银川

*通讯作者: 马小燕,单位:北方民族大学数学与信息科学学院 宁夏银川;

引用本文: 马小燕 色噪声激励下飞行器滚转运动系统的随机P分岔控制[J]. 物理科学与技术研究, 2024; 4: (1) : 7-16.
Published: 2024/6/28 19:47:34

摘要

为解决无人机在滚转运动中的横向稳定性,本文研究了随机激励下飞行器滚转运动系统的随机分岔控制。首先建立带有分数阶PID控制器的色噪声激励的滚转运动系统,借助幅值包络随机平均法计算得出FPK方程和振幅响应的平稳概率密度函数。其次,根据奇异性理论,推导了带有该控制器时系统发生随机P分岔所满足的条件。最后,经过数值验证发现,分数阶PID控制器的微分数,积分数及其系数都可以诱导系统发生随机P分岔。即该控制器对系统的随机分岔可以进行预期的控制。

关键词: 滚转运动;色噪声;随机平均法;P分岔;分数阶PID控制

Abstract

In order to solve the lateral stability of UAV in rolling motion, the random bifurcation control of UAV rolling motion system under random excitation is studied in this paper. Firstly, the rolling motion system with color noise excitation with fractional order PID controller is established, and the stationary probability density function of FPK equation and amplitude response is calculated by means of amplitude envelope random average method. Secondly, according to the singularity theory, the conditions for random P-bifurcation with the controller are derived. Finally, through numerical verification, it is found that the differential number, integral number and coefficient of fractional order PID controller can induce random P-bifurcation. That is, the controller can control the random bifurcation of the system in anticipation.

Key words: Rolling movement, Color noise, Stochastic averaging, P-bifurcation , Fractional order PID control

参考文献 References

[1] Ma J, Xu Y, Li Y, et al. Quantifying the parameter dependent basin of the unsafe regime of asymmetric Lévy-noise-induced critical transitions[J]. Applied Mathematics and Mechanics, 2021, 42(1): 65-84.

[2] Zhang X Y, Xu Y, Liu Q, et al. Rate-dependent tipping-delay phenomenon in a thermoacoustic system with colored noise[J]. Science China Technological Sciences, 2020, 63(11): 2315-2327.

[3] Liu Q, Xu Y, Kurths J. Bistability and stochastic jumps in an airfoil system with viscoelastic material property and random fluctuations[J]. Communications in Nonlinear Science and Numerical Simulation, 2020, 84: 105184.

[4] Kramer M A, Lopour B A, Kirsch H E, et al. Bifurcation control of a seizing human cortex[J]. Physical Review E, 2006, 73(4): 041928.

[5] Tesi A, Abed E H, Genesio R, et al. Harmonic balance analysis of period-doubling bifurcations with implications for control of nonlinear dynamics[J]. Automatica, 1996, 32(9): 1255-1271.

[6] Ji J C, Leung A Y T. Bifurcation control of a parametrically excited Duffing system[J]. Nonlinear Dynamics, 2002, 27(4): 411-417.

[7] Laufenberg M J, Pai M A, Padiyar K R. Hopf bifurcation control in power systems with static var compensators[J]. International Journal of Electrical Power & Energy Systems, 1997, 19(5): 339-347.

[8] Ji J C. Local bifurcation control of a forced single-degree-of-freedom nonlinear system: saddle-node bifurcation[J]. Nonlinear Dynamics, 2001, 25(4): 369-382.

[9] Vasegh N, Sedigh A K. Delayed feedback control of time-delayed chaotic systems: Analytical approach at Hopf bifurcation[J]. Physics Letters A, 2008, 372(31): 5110-5114.

[10] 刘冰琪,解初,刘鹏. PID控制器最优参数整定方法的研究[J]. 科技风,2022,(19):1-3.

[11] Xie Y, Chen L, Kang Y M, et al. Controlling the onset of Hopf bifurcation in the Hodgkin-Huxley model[J]. Physical Review E, 2008, 77(6): 061921.

[12] Xu Y, Ma S, Zhang H. Hopf bifurcation control for stochastic dynamical system with nonlinear random feedback method[J]. Nonlinear Dynamics, 2011, 65: 77-84.9.

[13] Podlubny I. Fractional-order systems and  -controllers[J]. IEEE Transactions on Automatic Control, 1999, 44(1): 208-214.

[14] Z, Ding J, Wu M, et al. Discrete fractional order PID controller design for nonlinear systems[J]. International Journal of Systems Science, 2021, 52(15): 3206-3213.

[15] Elzebda J M, Nayfeh A H, Mook D T. Development of an analytical model of wing rock for slender delta wings[J]. Journal of Aircraft, 1989, 26(8): 737-743.

[16] 焦萌倩,彭如月,黄文韬,蒋贵荣. 外激和参激作用下的三角翼飞行器滚转运动的随机响应[J]. 广西师范大学学报(自然科学版),2020,38(05):34-41.

[17] Nelson R C, Pelletier A. The unsteady aerodynamics of slender wings and aircraft undergoing large amplitude maneuvers[J]. Progress in Aerospace Sciences, 2003, 39(2-3): 185-248.

[18] 杨文,卜忱,眭建军. 某复杂构型飞机偏航-滚转耦合运动非定常气动力特性实验研究[J]. 实验流体力学,2016,30 (03):61-65.

[19] 刘伟,张涵信. 机翼自由滚转运动的Hopf分岔及数值模拟[C]//全国航空航天领域中的力学问题学术研讨会论文.北京:中国力学学会,2006:110-115.

[20] Miller K S, Ross B. An introduction to the fractional calculus and fractional differential equations[M]. Wiley, 1993.