Advances in International Computer Science
Advances in International Computer Science. 2023; 3: (5) ; 10.12208/j.aics.20230049 .
总浏览量: 2603
重庆大学 重庆
*通讯作者: 王诗诗,单位:重庆大学 重庆;
随着信息技术的飞速发展,大数据分析在健康医疗领域展现出巨大潜力,同时也面临不少挑战。本研究综述了大数据在提升医疗服务效率、促进医学研究与发展、支持公共卫生决策以及优化医疗成本方面的机遇。通过实时监控患者健康状态、个性化医疗方案的制定、加速临床试验进程以及疫情监控与预防等途径,大数据技术正逐步改变传统健康医疗模式,推动行业进步。然而,数据安全与隐私保护、数据质量与标准化、技术与基础设施要求以及法律与伦理问题等挑战亟需解决。针对这些挑战,本文提出加强数据保护措施、提升数据处理能力、完善技术培训和基础设施建设、积极应对法律与伦理问题等应对策略。展望未来,跨学科、跨行业的合作对于大数据在医疗健康领域的可持续发展至关重要。
With the rapid development of information technology, big data analytics shows great potential in healthcare and also faces many challenges. This study reviews the opportunities of big data in enhancing the efficiency of healthcare services, promoting medical research and development, supporting public health decision-making, and optimising healthcare costs. Big data technologies are gradually changing the traditional healthcare model and advancing the industry through real-time monitoring of patients' health status, development of personalised healthcare plans, acceleration of clinical trials, and outbreak monitoring and prevention. However, challenges such as data security and privacy protection, data quality and standardisation, technical and infrastructure requirements, and legal and ethical issues need to be addressed. In response to these challenges, this paper proposes coping strategies such as strengthening data protection measures, upgrading data processing capabilities, improving technical training and infrastructure development, and actively addressing legal and ethical issues. Looking ahead, interdisciplinary and cross-industry collaboration is crucial for the sustainable development of big data in healthcare.
[1] Dash S, Shakyawar S K, Sharma M, et al. Big data in healthcare: management, analysis and future prospects[J]. Journal of big data, 2019, 6(1): 1-25.
[2] Ngiam K Y, Khor W. Big data and machine learning algorithms for health-care delivery[J]. The Lancet Oncology, 2019, 20(5): e262-e273.
[3] Aceto G, Persico V, Pescapé A. Industry 4.0 and health: Internet of things, big data, and cloud computing for healthcare 4.0[J]. Journal of Industrial Information Integration, 2020, 18: 100129.
[4] Schüssler-Fiorenza Rose S M, Contrepois K, Moneghetti K J, et al. A longitudinal big data approach for precision health[J]. Nature medicine, 2019, 25(5): 792-804.
[5] 杨文静,杜然然,张冉等. 基于Web of Science数据库的健康医疗大数据研究热点和前沿分析 [J]. 中国卫生信息管理杂志, 2020, 17 (06): 809-814.
[6] Hariri R H, Fredericks E M, Bowers K M. Uncertainty in big data analytics: survey, opportunities, and challenges[J]. Journal of Big data, 2019, 6(1): 1-16.
[7] Price W N, Cohen I G. Privacy in the age of medical big data[J]. Nature medicine, 2019, 25(1): 37-43.
[8] Khang A, Abdullayev V, Ali R N, et al. Using Big Data to Solve Problems in the Field of Medicine[M]//Computer Vision and AI-Integrated IoT Technologies in the Medical Ecosystem. CRC Press, 2024: 407-418.
[9] Reddy G T, Reddy M P K, Lakshmanna K, et al. Analysis of dimensionality reduction techniques on big data[J]. Ieee Access, 2020, 8: 54776-54788.
[10] Yang J, Li Y, Liu Q, et al. Brief introduction of medical database and data mining technology in big data era[J]. Journal of Evidence‐Based Medicine, 2020, 13(1): 57-69.
[11] Naeem M, Jamal T, Diaz-Martinez J, et al. Trends and future perspective challenges in big data[C]//Advances in Intelligent Data Analysis and Applications: Proceeding of the Sixth Euro-China Conference on Intelligent Data Analysis and Applications, 15–18 October 2019, Arad, Romania. Springer Singapore, 2022: 309-325.
[12] Tian S, Yang W, Le Grange J M, et al. Smart healthcare: making medical care more intelligent[J]. Global Health Journal, 2019, 3(3): 62-65.
[13] Pastorino R, De Vito C, Migliara G, et al. Benefits and challenges of Big Data in healthcare: an overview of the European initiatives[J]. European journal of public health, 2019, 29(Supplement_3): 23-27.
[14] Lv Z, Qiao L. Analysis of healthcare big data[J]. Future Generation Computer Systems, 2020, 109: 103-110.
[15] 张玢,门佩璇,肖宇锋等. 大数据分析在骨科的应用研究进展 [J]. 中华骨与关节外科杂志, 2021, 14 (10): 866-871.
[16] 高景宏,翟运开,李明原等. 精准医疗领域健康医疗大数据处理的研究现状[J].中国医院管理, 2021, 41 (05): 8-13.
[17] Guo C, Chen J. Big data analytics in healthcare[M]//Knowledge technology and systems: Toward establishing knowledge systems science. Singapore: Springer Nature Singapore, 2023: 27-70.
[18] Palanisamy V, Thirunavukarasu R. Implications of big data analytics in developing healthcare frameworks–A review[J]. Journal of King Saud University-Computer and Information Sciences, 2019, 31(4): 415-425.
[19] 高景宏,王琳琳,马倩倩等. 精准医疗领域大数据分析面临的挑战 [J]. 中国医院管理, 2022, 42 (02): 60-63.
[20] 路薇,孙东旭,高景宏等. 面向精准医疗的大数据分析与建模关键技术综述 [J]. 中国医院管理, 2021, 41 (05): 19-25.
[21] Saranya P, Asha P. Survey on big data analytics in health care[C]//2019 International conference on smart systems and inventive technology (ICSSIT). IEEE, 2019: 46-51.
[22] Mehta N, Pandit A, Shukla S. Transforming healthcare with big data analytics and artificial intelligence: A systematic mapping study[J]. Journal of biomedical informatics, 2019, 100: 103311.
[23] Galetsi P, Katsaliaki K, Kumar S. Big data analytics in health sector: Theoretical framework, techniques and prospects[J]. International Journal of Information Management, 2020, 50: 206-216.
[24] Li W, Chai Y, Khan F, et al. A comprehensive survey on machine learning-based big data analytics for IoT-enabled smart healthcare system[J]. Mobile networks and applications, 2021, 26: 234-252.
[25] Lysaght T, Lim H Y, Xafis V, et al. AI-assisted decision-making in healthcare: the application of an ethics framework for big data in health and research[J]. Asian Bioethics Review, 2019, 11: 299-314.
[26] Aceto G, Persico V, Pescapé A. Industry 4.0 and health: Internet of things, big data, and cloud computing for healthcare 4.0[J]. Journal of Industrial Information Integration, 2020, 18: 100129.
[27] Syed L, Jabeen S, Manimala S, et al. Smart healthcare framework for ambient assisted living using IoMT and big data analytics techniques[J]. Future Generation Computer Systems, 2019, 101: 136-151.
[28] 赵玉阳. 大数据时代健康服务与管理的发展现状分析 [J]. 产业与科技论坛, 2023, 22 (22): 212-215.
[29] 张卫东,陈希鹏,杨斯涵. 健康医疗大数据价值挖掘分析框架构建 [J]. 图书情报工作, 2023, 67 (15): 35-43.
[30] 黄东宗,毕成,李鸿波等. 大数据在口腔医学中的应用研究进展 [J]. 中华老年口腔医学杂志, 2023, 21 (04): 198-203.
[31] 陈磊,张星. 基于CiteSpace的健康医疗大数据应用研究 [J]. 科技创业月刊, 2023, 36 (05): 180-183.
[32] 张晓棠,张海丽,衡金金. 大数据—大数据分析能力匹配与产品创新度——医疗健康服务业的实证研究 [J]. 科学决策, 2022, (07): 27-43.
[33] 蔡敏. 大数据分析在智慧医疗辅助诊断中的应用研究 [J]. 湖北开放职业学院学报, 2022, 35 (05): 144-145+148.
[34] 师小勤,赵杰,王琳琳等. 基于大数据分析技术的精准医疗应用综述 [J]. 中国医院管理, 2021, 41 (05): 26-31.
[35] 张大璐,李萍萍,潘子奇. 生物医药大数据:发展现状与政策建议 [J]. 中国生物工程杂志, 2019, 39 (12): 110-115.
[36] 张家亮. 大数据分析在医疗领域中的应用 [J]. 信息系统工程, 2018, (11): 52.
[37] 虞铭明,张迺英,李月娥. 医疗健康大数据分析的关键技术与决策支持 [J]. 中国科技论坛, 2018, (11): 53-62.
[38] 顾理琴. 大数据挖掘和分析在健康医疗领域的应用 [J]. 山西青年, 2018, (13): 144-145.
[39] 陈敏,刘宁,肖树发等. 医疗健康大数据应用关键问题及对策研究 [J]. 中国数字医学, 2016, 11 (08): 2-5.