ijcr@oajrc.org

国际临床研究杂志

International Journal of Clinical Research

您当前位置:首页 > 精选文章

International Journal of Clinical Research. 2024; 8: (2) ; 10.12208/j.ijcr.20241035 .

The Role of Intestinal Fungi and Viruses in Alcohol-Related Liver Disease
肠道真菌和病毒在酒精相关性肝病的作用

作者: 严胜琦, 朱清静 *

华中科技大学同济医学院附属金银潭医院 湖北武汉

*通讯作者: 朱清静,单位:华中科技大学同济医学院附属金银潭医院 湖北武汉;

引用本文: 严胜琦, 朱清静 肠道真菌和病毒在酒精相关性肝病的作用[J]. 国际临床研究杂志, 2024; 8: (2) : 1-6.
Published: 2024/2/21 22:57:18

摘要

酒精相关性肝病是长期饮酒造成的肝脏损伤疾病,引起肝功能异常,严重时可引起急性肝功能衰竭,可引起患者死亡。大多数引起肝脏的慢性损伤,对人们的生活质量造成影响。因此对于酒精性相关性肝病的研究亟待解决,对于其发病机制和预后尚未明确。肠道微生态是近年来研究热点。肠道微生态在酒精相关性肝病的发生及发展发挥着重要作用,大量研究发现以细菌为主的肠道菌群与酒精相关性肝病的发病机制有关。对于肠道真菌和病毒的研究较少。本文系统收集国内外肠道真菌和病毒与人类或者动物健康及疾病的文献,综述了肠道真菌和肠道病毒的组成和分布,与ALD的作用关系,从中寻找新的治疗靶点,为ALD的诊疗提供新思路。

关键词: 酒精相关性肝病(ALD);肠道真菌;肠道病毒;肠道微生物;肠肝轴

Abstract

Alcohol-related liver disease is the long-term drinking caused by liver damage disease, cause liver function abnormalities, severe can cause acute liver failure, can cause death. Most cause chronic damage to the liver, affecting people's quality of life. Therefore, the study of alcohol-related liver disease needs to be solved urgently, and its pathogenesis and prognosis are not clear. Intestinal microecology is a research hotspot in recent years. Intestinal microecology plays an important role in the occurrence and development of alcohol-related liver disease. A large number of studies have found that intestinal flora, dominated by bacteria, is related to the pathogenesis of alcohol-related liver disease. Less research has been done on intestinal fungi and viruses. In this paper, the literature on intestinal fungi and viruses and human or animal health and diseases at home and abroad was systematically collected, and the composition and distribution of intestinal fungi and enteroviruses were reviewed, as well as the relationship between intestinal fungi and enteroviruses and ALD, so as to find new therapeutic targets and provide new ideas for the diagnosis and treatment of ALD.

Key words: Alcohol-related liver disease (ALD); Intestinal fungi; Enterovirus; Gut microbes; Enterohepatic axis

参考文献 References

[1] Huang D Q, Mathurin P, Cortez-Pinto H, et al. Global epidemiology of alcohol-associated cirrhosis and HCC: trends, projections and risk factors[J]. Nat Rev Gastroenterol Hepatol, 2023, 20(1): 37-49.

[2] Gao W, Zhu Y, Ye J, et al. Gut non-bacterial microbiota contributing to alcohol-associated liver disease[J]. Gut Microbes, 2021, 13(1): 1984122.

[3] Albillos A, De Gottardi A, Rescigno M. The gut-liver axis in liver disease: Pathophysiological basis for therapy[J]. J Hepatol, 2020, 72(3): 558-577.

[4] Brescia P, Rescigno M. The gut vascular barrier: a new player in the gut-liver-brain axis[J]. Trends Mol Med, 2021, 27(9): 844-855.

[5] Posteraro B, Paroni Sterbini F, Petito V, et al. Liver Injury, Endotoxemia, and Their Relationship to Intestinal Microbiota Composition in Alcohol-Preferring Rats[J]. Alcohol Clin Exp Res, 2018, 42(12): 2313-2325.

[6] Bluemel S, Wang L, Kuelbs C, et al. Intestinal and hepatic microbiota changes associated with chronic ethanol administration in mice[J]. Gut Microbes, 2020, 11(3): 265-275.

[7] Bajaj J S. Alcohol, liver disease and the gut microbiota[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(4): 235-246.

[8] Lang S, Schnabl B. Microbiota and Fatty Liver Disease-the Known, the Unknown, and the Future[J]. Cell Host Microbe, 2020, 28(2): 233-244.

[9] Szabo G. Gut-liver axis in alcoholic liver disease[J]. Gastroenterology, 2015, 148(1): 30-6.

[10] Chopyk D M, Grakoui A. Contribution of the Intestinal Microbiome and Gut Barrier to Hepatic Disorders[J]. Gastroenterology, 2020, 159(3): 849-863.

[11] Adolph T E, Grander C, Moschen A R, et al. Liver-Microbiome Axis in Health and Disease[J]. Trends Immunol, 2018, 39(9): 712-723.

[12] Peay K G, Kennedy P G, Talbot J M. Dimensions of biodiversity in the Earth mycobiome[J]. Nat Rev Microbiol, 2016, 14(7): 434-47.

[13] Nash A K, Auchtung T A, Wong M C, et al. The gut mycobiome of the Human Microbiome Project healthy cohort[J]. Microbiome, 2017, 5(1): 153.

[14] Hillman E T, Lu H, Yao T, et al. Microbial Ecology along the Gastrointestinal Tract[J]. Microbes Environ, 2017, 32(4): 300-313.

[15] Hoffmann C, Dollive S, Grunberg S, et al. Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents[J]. PLoS One, 2013, 8(6): e66019.

[16] Willis K A, Purvis J H, Myers E D, et al. Fungi form interkingdom microbial communities in the primordial human gut that develop with gestational age[J]. FASEB J, 2019, 33(11): 12825-12837.

[17] Schei K, Avershina E, Oien T, et al. Early gut mycobiota and mother-offspring transfer[J]. Microbiome, 2017, 5(1): 107.

[18] Auchtung T A, Fofanova T Y, Stewart C J, et al. Investigating Colonization of the Healthy Adult Gastrointestinal Tract by Fungi[J]. mSphere, 2018, 3(2).

[19] Hartmann P, Lang S, Zeng S, et al. Dynamic Changes of the Fungal Microbiome in Alcohol Use Disorder[J]. Front Physiol, 2021, 12: 699253.

[20] Lang S, Duan Y, Liu J, et al. Intestinal Fungal Dysbiosis and Systemic Immune Response to Fungi in Patients With Alcoholic Hepatitis[J]. Hepatology, 2020, 71(2): 522-538.

[21] Yang A M, Inamine T, Hochrath K, et al. Intestinal fungi contribute to development of alcoholic liver disease[J]. J Clin Invest, 2017, 127(7): 2829-2841.

[22] Petrasek J, Bala S, Csak T, et al. IL-1 receptor antagonist ameliorates inflammasome-dependent alcoholic steatohepatitis in mice[J]. J Clin Invest, 2012, 122(10): 3476-89.

[23] Moyes D L, Wilson D, Richardson J P, et al. Candidalysin is a fungal peptide toxin critical for mucosal infection[J]. Nature, 2016, 532(7597): 64-8.

[24] Sun S, Wang K, Sun L, et al. Therapeutic manipulation of gut microbiota by polysaccharides of Wolfiporia cocos reveals the contribution of the gut fungi-induced PGE(2) to alcoholic hepatic steatosis[J]. Gut Microbes, 2020, 12(1): 1830693.

[25] Shkoporov A N, Clooney A G, Sutton T D S, et al. The Human Gut Virome Is Highly Diverse, Stable, and Individual Specific[J]. Cell Host Microbe, 2019, 26(4): 527-541 e5.

[26] Gregory A C, Zablocki O, Zayed A A, et al. The Gut Virome Database Reveals Age-Dependent Patterns of Virome Diversity in the Human Gut[J]. Cell Host Microbe, 2020, 28(5): 724-740 e8.

[27] Bai G H, Lin S C, Hsu Y H, et al. The Human Virome: Viral Metagenomics, Relations with Human Diseases, and Therapeutic Applications[J]. Viruses, 2022, 14(2).

[28] Jiang L, Lang S, Duan Y, et al. Intestinal Virome in Patients With Alcoholic Hepatitis[J]. Hepatology, 2020, 72(6): 2182-2196.

[29] Yurlov K I, Masalova O V, Kisteneva L B, et al. Human Herpesviruses Increase the Severity of Hepatitis[J]. Biology (Basel), 2021, 10(6).

[30] Tsai J P, Tseng K C, Lin M N, et al. A high seroprevalence of human herpesvirus type 8 already present in patients with chronic hepatitis before the development of cirrhosis[J]. Pathology, 2019, 51(1): 86-90.

[31] Chou A L, Huang W W, Tsao S M, et al. Human herpesvirus type 8 in patients with cirrhosis: correlation with sex, alcoholism, hepatitis B virus, disease severity, and thrombocytopenia[J]. Am J Clin Pathol,2008,130(2): 31-7.

[32] Hu J, Zhang X, Yu G, et al. Epstein-Barr virus infection is associated with a higher Child-Pugh score and may predict poor prognoses for patients with liver cirrhosis[J]. BMC Gastroenterol, 2019, 19(1): 94.

[33] Keen E C, Dantas G. Close Encounters of Three Kinds: Bacteriophages, Commensal Bacteria, and Host Immunity[J]. Trends Microbiol, 2018, 26(11): 943-954.

[34] Bajaj J S, Sikaroodi M, Shamsaddini A, et al. Interaction of bacterial metagenome and virome in patients with cirrhosis and hepatic encephalopathy[J]. Gut, 2021, 70(6): 1162-1173.

[35] Pirnay J P, Blasdel B G, Bretaudeau L, et al. Quality and safety requirements for sustainable phage therapy products[J]. Pharm Res, 2015, 32(7): 2173-9.

[36] Cheroutre H, Madakamutil L. Acquired and natural memory T cells join forces at the mucosal front line[J]. Nat Rev Immunol, 2004, 4(4): 290-300.

[37] Cheroutre H L F, Mucida D. The light and dark sides of intestinal intraepithelial lymphocytes[J]. Nat Rev Immunol.

[38] Liu L, Gong T, Tao W, et al. Commensal viruses maintain intestinal intraepithelial lymphocytes via noncanonical RIG-I signaling[J]. Nat Immunol, 2019, 20(12): 1681-1691.

[39] Gogokhia L, Buhrke K, Bell R, et al. Expansion of Bacteriophages Is Linked to Aggravated Intestinal Inflammation and Colitis[J]. Cell Host Microbe, 2019, 25(2): 285-299 e8.

[40] European Association for the Study of the Liver. Electronic Address E E E, European Association for the Study of The L. EASL Clinical Practice Guidelines for the management of patients with decompensated cirrhosis[J]. J Hepatol, 2018, 69(2): 406-460.

[41] Zeng X, Sheng X, Wang P Q, et al. Low-dose rifaximin prevents complications and improves survival in patients with decompensated liver cirrhosis[J]. Hepatol Int, 2021, 15(1): 155-165.

[42] Wang Z, Hou W, Zhang W, et al. [Rifaximin improves clinical symptoms and short-term survival in cirrhotic patients with refractory type ascites][J]. Zhonghua Gan Zang Bing Za Zhi, 2022, 30(11): 1170-1174.

[43] Fujimoto Y, Kaji K, Nishimura N, et al. Dual therapy with zinc acetate and rifaximin prevents from ethanol-induced liver fibrosis by maintaining intestinal barrier integrity[J]. World J Gastroenterol, 2021, 27(48): 8323-8342.

[44] Pais P, Almeida V, Yilmaz M, et al. Saccharomyces boulardii: What Makes It Tick as Successful Probiotic?[J]. J Fungi (Basel), 2020, 6(2).

[45] Kazmierczak-Siedlecka K, Ruszkowski J, Fic M, et al. Saccharomyces boulardii CNCM I-745: A Non-bacterial Microorganism Used as Probiotic Agent in Supporting Treatment of Selected Diseases[J]. Curr Microbiol, 2020, 77(9): 1987-1996.

[46] Wang C, Li W, Wang H, et al. Saccharomyces boulardii alleviates ulcerative colitis carcinogenesis in mice by reducing TNF-alpha and IL-6 levels and functions and by rebalancing intestinal microbiota[J]. BMC Microbiol, 2019, 19(1): 246.

[47] Sjomina O, Polaka I, Suhorukova J, et al. Randomised clinical trial: efficacy and safety of H. pylori eradication treatment with and without Saccharomyces boulardii supplementation[J]. Eur J Cancer Prev, 2023.

[48] Duan Y, Llorente C, Lang S, et al. Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease[J]. Nature, 2019, 575(7783): 505-511.

[49] Van Belleghem J D, Clement F, Merabishvili M, et al. Pro- and anti-inflammatory responses of peripheral blood mononuclear cells induced by Staphylococcus aureus and Pseudomonas aeruginosa phages[J]. Sci Rep, 2017, 7(1): 8004.

[50] Mendes B G, Duan Y, Schnabl B. Immune Response of an Oral Enterococcus faecalis Phage Cocktail in a Mouse Model of Ethanol-Induced Liver Disease[J]. Viruses, 2022, 14(3).

[51] Wang S-Y T X, Liu Z-Q, Ma H, Liu T-B, Yang Y-Q, Ying Y, Gao R-Y, Zhang D-Z, Ma Y-F, Chen K, Lin L, Jiang Z-H, Yu J-L. . Pharmacokinetics and safety evaluation of intravenously administered Pseudomonas phage PA_LZ7 in a mouse model. [J]. Microbiol Spectr, 2024, 12(1): e0188223.

[52] Tan X, Chen K, Jiang Z, et al. Evaluation of the impact of repeated intravenous phage doses on mammalian host-phage interactions[J]. J Virol, 2024, 98(1): e0135923.