Journal of Modern Biotechnology Research
Journal of Modern Biotechnology Research. 2023; 1: (1) ; 10.12208/j.jmbr.20230003 .
总浏览量: 805
西安交通大学药学院 陕西西安
西安交通大学第一附属医院胸外科 陕西西安
*通讯作者: 王珂,单位:西安交通大学药学院 陕西西安;
炎症性肠病(Inflammatory bowel disease, IBD)是一种目前为止病因不明的胃肠道慢性炎症疾病,包括克罗恩病(Crohn's disease, CD)和溃疡性结肠炎(ulcerative colitis, UC)。近年来,IBD的发病率急剧上升,临床上使用的传统的治疗药物包括氨基水杨酸盐、免疫调节剂、皮质类固醇和抗生素等,虽然这些药物对于IBD有一定的治疗效果,但是各自仍然表现出不同的不良反应以及预后不佳等特点。统计表明,近40%的IBD患者在传统治疗药物的基础上采用补充或替代疗法。黄酮类化合物是一种低分子量化合物,广泛存在于包括蔬菜和水果在内的多种植物中。近年来,由于具有抗炎、抗病毒、抗癌和神经保护作用等多种优点,黄酮类化合物越来越受到人们的关注,许多研究结果表明,一些黄酮类化合物,比如芹菜素、槲皮素、姜黄素等具有预防或者治疗IBD的能力。本综述主要聚焦于黄酮类化合物在IBD中的潜在应用机制。
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract of unknown etiology, including Crohn's disease (CD) and ulcerative colitis (UC). In recent years, the incidence of IBD has increased dramatically, and the traditional therapeutic drugs used in clinical practice include aminosalicylates, immunomodulators, corticosteroids, and antibiotics, etc. Despite the therapeutic effects of these drugs on IBD, each of them still exhibits different adverse effects and poor prognosis. The statistics show that nearly 40% of IBD patients use complementary or alternative therapies to traditional therapeutic drugs. Flavonoids are low molecular weight compounds widely found in various plants including vegetables and fruits. In recent years, flavonoids have received increasing attention due to a variety of benefits such as anti-inflammatory, antiviral, anticancer, and neuroprotective effects, and the results of many studies have shown that some flavonoids, such as apigenin, quercetin, and curcumin, can prevent or treat IBD. This review mainly focuses on the potential mechanisms of flavonoids in IBD.
[1] S A, SH P, EV L. Epidemiology, Natural History, and Risk Stratification of Crohn's Disease [J]. Gastroenterology clinics of North America, 2017, 46(3): 463-80.
[2] GP R, KA P. Mechanisms of Disease: Inflammatory Bowel Diseases [J]. Mayo Clinic proceedings, 2019, 94(1): 155-65.
[3] SC N, HY S, N H, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies [J]. Lancet (London, England), 2017, 390(10114): 2769-78.
[4] DS S, PA R. The Role of Environmental Factors in the Pathogenesis of Inflammatory Bowel Diseases: A Review [J]. JAMA pediatrics, 2017, 171(10): 999-1005.
[5] JD S, G O, KH P, et al. Augmented increase in tight junction permeability by luminal stimuli in the non-inflamed ileum of Crohn's disease [J]. Gut, 2002, 50(3): 307-13.
[6] DG B, P R, KS R, et al. Deficient iNOS in inflammatory bowel disease intestinal microvascular endothelial cells results in increased leukocyte adhesion [J]. Free radical biology & medicine, 2000, 29(9): 881-8.
[7] ME S, AZ B, J B, et al. Epidemiology of inflammatory bowel disease in a German twin cohort: results of a nationwide study [J]. Inflammatory bowel diseases, 2008, 14(7): 968-76.
[8] B K, A G, RJ X. Genetics and pathogenesis of inflammatory bowel disease [J]. Nature, 2011, 474(7351): 307-17.
[9] MN I, DE E. Immunologic and molecular mechanisms in inflammatory bowel disease [J]. The Surgical clinics of North America, 2007, 87(3): 681-96.
[10] M L, Y L, B W. Biodegradable Polymeric Nanoparticles Loaded with Flavonoids: A Promising Therapy for Inflammatory Bowel Disease [J]. International journal of molecular sciences, 2023, 24(5).
[11] Y S, EV R, C G, et al. The Intestinal Fate of Citrus Flavanones and Their Effects on Gastrointestinal Health [J]. Nutrients, 2019, 11(7).
[12] F L, Y Z, Q P, et al. Apigenin-Mn(II) loaded hyaluronic acid nanoparticles for ulcerative colitis therapy in mice [J]. Frontiers in chemistry, 2022, 10: 969962.
[13] YL L, HF Z, J Y, et al. Biological Activities Underlying the Therapeutic Effect of Quercetin on Inflammatory Bowel Disease [J]. Mediators of inflammation, 2022, 2022: 5665778.
[14] T V, A R-N, F A, et al. Flavonoids in Inflammatory Bowel Disease: A Review [J]. Nutrients, 2016, 8(4): 211.
[15] H S, DP J. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents [J]. Nature reviews Molecular cell biology, 2020, 21(7): 363-83.
[16] Y C, M S, Q Y, et al. Wielding the double-edged sword: Redox drug delivery systems for inflammatory bowel disease [J]. Journal of controlled release : official journal of the Controlled Release Society, 2023, 358: 510-40.
[17] DB Z, M J, SJ S. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release [J]. Physiological reviews, 2014, 94(3): 909-50.
[18] S J-C, K F, R F. Antioxidants as Protection against Reactive Oxidative Stress in Inflammatory Bowel Disease [J]. Metabolites, 2023, 13(4).
[19] T T, Z W, J Z. Pathomechanisms of Oxidative Stress in Inflammatory Bowel Disease and Potential Antioxidant Therapies [J]. Oxidative medicine and cellular longevity, 2017, 2017: 4535194.
[20] H S, H M, N W, et al. Therapeutic potential of flavonoids in cancer: ROS-mediated mechanisms [J]. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2022, 146: 112442.
[21] D C, M C, ME R-C, et al. The intestinal anti-inflammatory effect of quercitrin is associated with an inhibition in iNOS expression [J]. British journal of pharmacology, 2004, 143(7): 908-18.
[22] HS K, SM O, JK K. Glabridin, a functional compound of liquorice, attenuates colonic inflammation in mice with dextran sulphate sodium-induced colitis [J]. Clinical and experimental immunology, 2008, 151(1): 165-73.
[23] HS O, T C, WJ D V. Green Tea Polyphenols and Sulfasalazine have Parallel Anti-Inflammatory Properties in Colitis Models [J]. Frontiers in immunology, 2013, 4: 132.
[24] M B, S W, W D, et al. Green tea polyphenol epigallocatechin-3-gallate shows therapeutic antioxidative effects in a murine model of colitis [J]. Journal of Crohn's & colitis, 2012, 6(2): 226-35.
[25] Z L, Y J, T Y, et al. A Review on the Immunomodulatory Mechanism of Acupuncture in the Treatment of Inflammatory Bowel Disease [J]. Evidence-based complementary and alternative medicine : eCAM, 2022, 2022: 8528938.
[26] 李禹墨. 氧化苦参碱通过调控SIRT1介导的细胞焦亡改善溃疡性结肠炎的作用机制研究 [D]; 长春中医药大学, 2022.
[27] 张露丹. 二氢杨梅素调节巨噬细胞极化改善小鼠葡聚糖硫酸钠结肠炎 [D]; 兰州大学, 2022.
[28] 王书侠, 张家明, 姚孝明, et al. 木犀草素对活化的RAW264.7巨噬细胞分泌炎症因子的影响 [J]. 医学研究生学报, 2017, 30(01): 31-5.
[29] L C, L F, ZH Z, et al. The anti-inflammation effect of baicalin on experimental colitis through inhibiting TLR4/NF-κB pathway activation [J]. International immunopharmacology, 2014, 23(1): 294-303.
[30] M C, D C, S S, et al. In vivo quercitrin anti-inflammatory effect involves release of quercetin, which inhibits inflammation through down-regulation of the NF-kappaB pathway [J]. European journal of immunology, 2005, 35(2): 584-92.
[31] 余曼荣, 贺建华, 肖定福. 辅助性T细胞17/调节性T细胞平衡调控炎症性肠病及其在动物生产上的应用 [J]. 动物营养学报, 2021, 33(04): 1925-35.
[32] JD L. Promises and paradoxes of regulatory T cells in inflammatory bowel disease [J]. World journal of gastroenterology, 2015, 21(40): 11236-45.
[33] YJ L, B T, FC W, et al. Parthenolide ameliorates colon inflammation through regulating Treg/Th17 balance in a gut microbiota-dependent manner [J]. Theranostics, 2020, 10(12): 5225-41.
[34] L W, M G, G K, et al. The Potential Role of Phytonutrients Flavonoids Influencing Gut Microbiota in the Prophylaxis and Treatment of Inflammatory Bowel Disease [J]. Frontiers in nutrition, 2021, 8: 798038.
[35] JC E, A G-S, FA T-B. The gut microbiota: A key factor in the therapeutic effects of (poly)phenols [J]. Biochemical pharmacology, 2017, 139: 82-93.
[36] 吴甜甜. 姜黄素干预TLR/MyD88信号调节复发型结肠炎小鼠Breg细胞水平的作用机制研究 [D]; 江西中医药大学, 2021.
[37] S D, M Z, K W, et al. Dihydromyricetin improves DSS-induced colitis in mice via modulation of fecal-bacteria-related bile acid metabolism [J]. Pharmacological research, 2021, 171: 105767.
[38] J H, L C, B X, et al. Different Flavonoids Can Shape Unique Gut Microbiota Profile In Vitro [J]. Journal of food science, 2016, 81(9): H2273-9.