[email protected]

资源与环境科学进展

Advances in Resources and Environmental Science

您当前位置:首页 > 精选文章

Advances in Resources and Environmental Science. 2023; 2: (3) ; 10.12208/j.aes.20230013 .

Reconstruction of climatic environment by quantitative index of architecture---based on the grain size and element index systems of sediments from Huangmaotan Lake in the middle reaches of the Yangtze River
体系结构量化指标对气候环境的重建研究----基于长江中游黄茅潭湖泊沉积粒度、元素指标体系

作者: 周雅文, 贾玉连 *

闽南师范大学历史地理学院 福建漳州

*通讯作者: 贾玉连,单位:闽南师范大学历史地理学院 福建漳州;

引用本文: 周雅文, 贾玉连 体系结构量化指标对气候环境的重建研究----基于长江中游黄茅潭湖泊沉积粒度、元素指标体系[J]. 资源与环境科学进展, 2023; 2: (3) : 7-19.
Published: 2023/9/9 16:47:59

摘要

重建过去气候环境,研究气候环境的变化特点、过程和规律,是全球变化研究的基础性工作之一。其基本思路,就是通过易受温度、降水及其他气候环境因素影响的物理、化学或生物指标,来定性、定量重建气候环境记录。但是,需要明确的是,这种记录直接反映的是气候环境状态及其变化,并可能因指标的敏感性差异而使重建结果具有畸变特征。为克服这种缺点,本文利用长江中游一小型吞吐湖泊黄茅潭湖泊柱状沉积,在高精度年代时标的控制下,基于17个粒度指标和17个元素(含量)指标,在各指标的异常变化及指标两两相互关系异常变化的基础上,建构了Ai-1、Ai-2两个系列的体系(粒度指标体系和元素指标体系)结构量化指标;尝试通过研究指标体系的结构性变化,来研究气候环境变化。研究认为,Ai(G)-1、Ai(G)-2和Ai(E)-1、Ai(E)-2均具有对降水等水文情势信息的敏感响应,但对温度变化无显著响应。由此,研究基于Ai(G)-2系列中的Ai(G)-1-2定量重建了流域C.E 1950-2010年间的年降水(mm/a);与30km外九江气象站同期实测降水3年滑动平均相关系数为0.58(n=51),通过了P<0.001的显著性水平检验,初步实现了基于碎屑沉积粒度信息对降水等水文情势信息的定量重建。研究使我们深刻认识到,可视可感的宏观气候环境因素---降水,可以通过粒度指标体系的结构性变化这种体现系统"复杂性"的指标来定量重建,这丰富了我们对于气候环境因素的认知,对全球变化研究具有重要的科学意义。

关键词: 长江中游;湖泊沉积;结构量化指标;异常指数;降水重建

Abstract

It is one of the basic work of global change researches to reconstruct the past climate and environment and to study the characteristics, process and law of environment changes. The basic idea is to qualitatively and quantitatively reconstruct climatic and environmental records from physical, chemical or biological indicators that are susceptible to temperature, precipitation and other climatic and environmental factors. However, it should be made clear that such records directly reflect the state of the climatic-related environment and its changes, and usually the reconstruction results may have distorted due to the difference in sensitivity of the indicators. In order to overcome this shortcoming, this paper uses the columnar sediments of Huangmaotan Lake, a small swallow and spit lake in the middle reaches of the Yangtze River, and, under the control of high-precision time scale, based on 17 particle size indexes and 17 element (content) indexes and the abnormal changes of each index and the abnormal changes of their pair-pair relationship, The structural quantitative indexes of Ai-1 and Ai-2 series of systems (particle size index system and element index system) were constructed. This paper attempts to study the change of climatic environment by studying the structural change of index system. It is concluded that Ai (G) -1, Ai (G) -2, Ai (E) -1, Ai (E) -2 are sensitive to hydrological information such as precipitation, but have no significant response to temperature change. Therefore, based on Ai (G) -1-2 in the Ai (G) -2 series, the annual precipitation (mm/a) during C.E 1950-2010 was quantitatively reconstructed with which The correlation coefficient of the 3-year sliding average of the measured precipitation at Jiujiang meteorological station 30km away is 0.58 (n=51), which passes the significance level test of P<0.001. The study makes us deeply realize that the visible and perceptible macro-climate and environmental factor, precipitation, can be quantitatively reconstructed through the structural change of the grain size index system, which reflects the "complexity" of the system. This enriched our cognition of climatic and environmental factors and has important scientific significance for the study of global change.

Key words: The Middle Reaches of Yangtze River; Lacustrine deposits; Structural Quantitative Index of System; Anomaly Index; Precipitation reconstruction

参考文献 References

[1] Bradley R S. Paleoclimatology: reconstructing climates of the Quaternary[M]. Amsterdam: Elsevier, 1999: 329-332. 

[2] Reading H G. Sedimentary environments: processes, facies and stratigraphy[M]. New Jersey: Wiley-Blackwell, 1996: 112-126.

[3] Kang S, Xu Y, You Q, et al. Review of climate and cryospheric change in the Tibetan Plateau[J]. Environmental Research Letters. 2010, 5(1): 15101.

[4] Bauer E, Claussen M, Brovkin V, et al. Assessing climate forcings of the Earth system for the past millennium[J]. Geophysical Research Letters. 2003, 30(6): 1276.

[5] Liepert B G. The physical concept of climate forcing[J]. Wiley Interdisciplinary Reviews Climate Change. 2010, 1(6): 786-802.

[6] Wang P, Jian Z. Exploring the deep South China Sea: Retrospects and prospects[J]. Science China Earth Sciences. 2019, 62(10): 1473-1488.

[7] Atwood A R, Donohoe A, Battisti D S, et al. Robust longitudinally variable responses of the ITCZ to a myriad of climate forcings[J]. Geophysical Research Letters. 2020, 47(17): e2020G-e88833G.

[8] Schillereff D N, Chiverrell R C, Macdonald N, et al. Flood stratigraphies in lake sediments: A review[J]. Earth-Science Reviews. 2014, 135: 17-37.

[9] Lapointe F, Francus P, Lamoureux S F, et al. 1750 years of large rainfall events inferred from particle size at East Lake, Cape Bounty, Melville Island, Canada[J]. Journal of Paleolimnology. 2012, 48(1): 159-173.

[10] Shao J, Yang S, Chao L. Chemical indices (CIA and WIP) as proxies for integrated chemical weathering in China: Inferences from analysis of fluvial sediments[J]. Sedimentary Geology, 2012, 265-266(6):110-120.

[11] Sheldon, N.D., Tabor, N.J., 2009. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth-Science Reviews 95, 1-52.

[12] Nesbitt, H.W., Markovics, G., 1997. Weathering of granodioritic crust, long term storage of elements in weathering profiles, and petrogenesis of siliclastic sediments. Geochimica et Cosmochimica Acta 61, 1653 -1670.

[13] Garzanti E, Andò S, France-Lanord C, Vezzoli G, Censi P, Galy V, Najman Y,. Mineralogical and chemical variability of fluvial sediments 1. Bedload sand (Ganga-Brahmaputra, Bangladesh). Earth and Planetary Science Letters, 2010, 299: 368-381. 

[14] 江西省湖口县志编纂委员会.湖口县志[M].南昌:江西人民出版社,1992:1-694. [Compilation Committee of Hukou County Chronicle of Jiangxi Province. Hukou County Chronicle[M]. Nanchang: Jiangxi People's Publishing House, 1992:1-694.]

[15] Jia Y, Lai Z, Zhang J, et al. Chronology and provenance of aeolian sediments from Poyang Lake area in the middle reaches of the Yangtze River in China[J]. Quaternary Geochronology. 2012, 10: 44-49.

[16] Appleby P G. Radiometric dating of sediment records in European mountain lakes[J]. Journal of Limnology. 2000, 59: 1-14.

[17] Arnaud F, Lignier V, Revel M, et al. Flood and earthquake disturbance of 210Pb geochronology (Lake Anterne, North French Alps)[J]. Terra Nova. 2010, 14: 225-232.

[18] 冷雪,吴霜,王昕梅,等.赣北黄茅潭近代湖泊137Cs蓄积特点、SCP计数和事件性沉积及其对210Pb计年的矫正[J].海洋与湖沼,2017,48(05): 944-951.[Leng Xue, Wu Shuang, Wang Xinmei, et al.137Cs buildup,dating,and tuning for the recent lake sediment in Huangmaotan lake,Jiangxi,South China[J]. Oceanologia Et Limnologia Sinica, 2017,48(05):944-951.] 

[19] 吴霜,刘倩,曹向明,等.赣北黄茅潭湖泊沉积记录的240年以来古洪水事件[J].地理科学进展,2017, 36(11): 1413-1422. [Wu S, LiuQ, Cao X M, et al. 2017. A 240-year sedimentary record of paleoflood events from the Huangmaotan Lake, northern Jiangxi Province[J]. Progress in Geography, 36(11): 1413-1422.  

[20] Rose N L. A note on further refinements to a procedure for the extraction of earbonaeeous fly-ash particles from sediments[J]. Journal of Paleolimnology. 1994(11): 201-204.

[21] Rose N L. Spheroidal Carbonaceous Fly Ash Particles Provide a Globally Synchronous Stratigraphic Marker for the Anthropocene[J]. Environmental Science & Technology. 2015, 49(7): 4155-4162.

[22] 齐永青,张信宝,贺秀斌,等.中国137Cs本底值区域分布研究[J].核技术,2006, 29(01): 42-50.[Qi Yongqing, Zhang Xinbao, He xiubin, et al.137Cs reference inventories distribution pattern in China[J]. Nuclear Techniques, 2006, 29(01): 42-50.] 

[23] 万国江.现代沉积的210Pb计年[J].第四纪研究, 1997(03): 230-239. [Wan Guojiang. 210Pb dating for recent sedimentation[J]. Quaternary Sciences, 1997, 03: 230-239.] 

[24] Blott S J, Pye K. Gradistat: a grain size distribution and statistics package for the analysis of unconsolidated sediments[J]. Earth Surface Processes and Landforms. 2001, 26(11): 1237-1248.

[25] Udden J A. Mechanical composition of clastic sediments[J]. Bulletin of the Geological Society of America. 1914, 25(1): 655-744.

[26] Paterson G A, Heslop D. New methods for unmixing sediment grain size data[J]. Geochemistry, Geophysics, Geosystems. 2015, 16(12): 4494-4506.

[27] Walling D E, Moorehead P W, Anonymous. The particle size characteristics of fluvial suspended sediment; an overview[J]. Hydrobiologia. 1989, 176-177(1): 125-149. 

[28] Royse J R, Chester F. Recognition of fluvial environments by particle-size characteristics[J]. Journal of Sedimentary Research. 1968, 38(4): 1171-1178.

[29] Visher G S. Grain size distributions and depositional processes[J]. Journal of Sedimentary Research. 1969, 39(3): 1074-1106.

[30] 刘爱利,王培法,丁园圆(编著),地统计学概论[M],北京:科学出版社,2012, 1-183.[Liu Aili, Wang Peifa, Ding Yuanyuan (Ed.), Introduction to Geostatistics [M], Beijing: Science Press, 2012, 1-183.]  

[31] Li Xiaodong, Zhu Kaifen, Qian Weihong. Spatiotemporal Variation of Summer Rainfall over Eastern China during1880-1999. Advances in Atmospheric Sciences[J], 2002, 06:1055-1068. 

[32] 吕俊梅,琚建华,江剑民.近一百年中国东部区域降水的年代际跃变[J]. 大气科学,2009, 33(3): 524- 536. [Lǜ Junmei, Ju Jianhua, Jiang Jianmin. Interdecadal regime shifts of regional precipitation over eastern China during the last 100 years[J]. Chinese Journal of Atmospheric Sciences(in Chinese), 2009, 33(3): 524- 536.]  

[33] Haug G H, Günther D, Peterson L C, Sigman D M, et al. Climate and the Collapse of Maya Civilization. Science, 299 (5613):1731-1735.  

[34] Dypvik H, Harris N B.Geochemical facies analysis of fine-grained siliciclastics using Th/U, Zr/Rb and (Zr+Rb)/Sr ratios[J]. Chemical Geology, 2001, 181(1-4):131-146. 

[35] Fisher R A, Koven C D. Perspectives on the future of land surface models and the challenges of representing complex terrestrial systems[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(4): e2018MS001453.

[36] de Rosnay P, Polcher J. Modelling root water uptake in a complex land surface scheme coupled to a GCM[J]. Hydrology and Earth System Sciences, 1998, 2(2/3): 239-255. 

[37] Tang Q, Collins A L, Wen A, et al. Particle size differentiation explains flow regulation controls on sediment sorting in the water-level fluctuation zone of the Three Gorges Reservoir, China[J]. Science of The Total Environment. 2018, 633: 1114-1125.

[38] Wei X, Cai S, Ni P, et al. Impacts of climate change and human activities on the water discharge and sediment load of the Pearl River, southern China[J]. Scientific Reports. 2020, 10(1): 1-11. 

[39] Holland J H. Emergence: from chaos to order[M]. New York: Oxford University Press, 1998: 78-88.

[40] 颜泽贤,范冬萍,张华夏,等.系统科学导论-复杂性探索[M].北京:人民出版社,2004, 1-480. [Yan Ze xian, Fan Dongping, Zhang Huaxia, et al., Introduction to System Science-Complexity Exploration[M]. Beijing: People's Publishing House, 2004, 1-480.]  

[41] 叔本华.作为意志和表象的世界(石冲白译)[M].上海: 商务印书馆,1982,1-698. [Schopenhauer. the World as Will and Representation [M]. Shanghai: Commercial Press, 1982, 1-698]  

[42] Cale J A, Teale S A, West J L, et al. A quantitative index of forest structural sustainability[J]. Forests, 2014, 5(7): 1618-1634.

[43] Palágyi K, Tschirren J, Hoffman E A, et al. Quantitative analysis of pulmonary airway tree structures[J]. Computers in Biology and Medicine, 2006, 9(36): 974-996. 

[44] Wilson L Y, Famini G R. Using theoretical descriptors in quantitative structure-activity relationships: some toxicological indices[J]. Journal of medicinal chemistry, 1991, 34(5): 1668-1674. 

[45] Kumar A, Kumar P. Construction of pioneering quantitative structure activity relationship screening models for abuse potential of designer drugs using index of ideality of correlation in monte carlo optimization[J]. Archives of toxicology, 2020, 94(9): 3069-3086.