Advances in Resources and Environmental Science
Advances in Resources and Environmental Science. 2023; 2: (2) ; 10.12208/j.aes.20230007 .
总浏览量: 981
黄淮学院 河南驻马店
*通讯作者: 梁长利,单位:黄淮学院 河南驻马店;
畜禽养殖源废水是最主要的水污染源,畜禽废水未经过深度净化直接排放严重危害当地的生态环境和美丽乡村建设,因此治理畜禽养殖废水已经成为当前环境保护的重点。相比传统的污水处理方法,微藻处理畜禽养殖废水具有污染物去除率高、资源综合利用率高、成本低和改善空气质量的优点,是可同时实现废水污染物去除和资源综合回收的废水治理方法。本文综述了我国畜禽养殖废水排放及对生态环境的污染,微藻处理废水的优点,微藻单独处理畜禽养殖废水和菌藻共生处理畜禽养殖废水研究现状,微藻规模化处理畜禽养殖废水需要解决的问题,以期为微藻处理废水所借鉴。
Livestock and poultry breeding wastewater has become a leading water pollution resource, and the direct discharge of it without deep treatment has caused serious damage to the ecology and beautiful countryside. Today, the treatment of livestock and poultry breeding wastewater has become an important issue for the preservation of the environment. Compared to the traditional wastewater treatment methods, microalgae treatment of livestock and poultry breeding wastewater can achieve the removal of pollutants and the comprehensive utilization of resources from the wastewater at the same time, which is mainly because it has a high removal rate of pollutants, a high utilization rate of resources, a low cost, and improved air quality. The harm to our ecological system resulted from the direct discharge of livestock and poultry breeding wastewater. The advantages of the treatment of livestock and poultry breeding wastewater by microalgae were reviewed. This paper mainly reviews the advantages of the treatment of livestock and poultry breeding wastewater by microalgae, the advances in the treatment of livestock and poultry breeding wastewater by microalgae solely and microalgae-bacteria symbiosis, and the questions that should be resolved for the large-scale utilization of the technology. The aim of the paper is to provide some references for the application of the process to the treatment of livestock and poultry breeding wastewater.
[1] 中华人民共和国生态环境部. 第二次全国污染源普查公报[B], 中华人民共和国生态环境部, 2020.
[2] 唐凯. 国内畜禽养殖废水处理技术的研究进展[J]. 应用化工. 2018, 47(10): 2774-2778.
[3] 马晓冬, 张星梓, 胡玉洪,刘艳. 畜禽养殖废水处理方法的研究进展[J]. 再生资源与循环经济. 2019,12(1), 36-38+42.
[4] 韩伟铖, 颜成,周立祥. 规模化猪场废水常规生化处理的效果及原因剖析[J]. 农业环境科学学报. 2017, 36(5): 989-995.
[5] 张颖,邓良伟. 猪场废水厌氧消化过程中的除磷效果[J]. 生态与农村环境学报. 2012, 28(1): 93-97.
[6] 马浩天,李润植, 张宏江, 等. 基于微藻培养处理畜禽养殖废水的研究进展[J]. 生物技术通报. 2018, 34(11):89-96.
[7] 李润植, 季春丽,崔红利. 微藻生物技术助力功能农业[J].山西农业大学学报(自然科学版). 2018, 38(3): 1-12.
[8] Zhou WG, Chen P, Min M, et al. Environment-enhancing algal biofuel production using wastewaters[J]. Renewable and Sustainable Energy Reviews.2014, 36:256-269.
[9] 刘林林, 黄旭雄, 危立坤, 等. 15株微藻对猪场养殖污水中氮磷的净化及其细胞营养分析[J]. 环境科学学报. 2014, 34(8): 1986-1994.
[10] Ganeshkumar V, Subashchandrabose SR, Dharmarajan R,et al. Use of mixed wastewaters from piggery and winery for nutrient removal and lipid production by Chlorella sp. MM3[J]. Bioresource Technology. 2018,256:254.
[11] Nam K, Lee H, Heo SW, et al. Cultivation of Chlorella vulgaris with swine wastewater and potential for algal biodiesel production[J]. Journal of Applied Phycology, 2016, 2: 1171-1178.
[12] Deng XY, Gao K, Zhang RC, et al. Growing Chlorella vulgaris on thermophilic anaerobic digestion swine manure for nutrient removal and biomass production[J]. Bioresource Technology. 2017, 243: 417-425.
[13] Mousavi S, Najafpour GD, Mohammadi M,et al. Cultivation of newly isolated microalgae Coelastrum sp. in wastewater for simultaneous CO2 fixation, lipid production and wastewater treatment[J]. Bioprocess Biosyst Eng.2018, 41(7): 519-530.
[14] Luo LZ, Shao Y, Luo S, et al. Nutrient removal from piggery wastewater by Desmodesmus sp.CHX1 and its cultivation conditions optimization[J]. Environmental Technology. 2019, 40(21): 2739-2746.
[15] Qu W, Zhang C, Chen X,et al. New concept in swinewastewater treatment: development of a self-sustainingsynergetic microalgae-bacteria symbiosis (ABS) systemto achieve environmental sustainability[J]. Journal of Hazardous Materials. 2021, 418:126264.
[16] 皮永蕊, 吕永红, 柳莹, 等. 微藻-细菌共生体系在废水处理中的应用[C]. 中国微生物学会第七届地质微生物学术研讨会, 上海, 2018,.
[17] Franz G, Vera T, Jutta W, et al. Algae as an importantenvironment for bacteria – phylogenetic relationships among new bacterial species isolated from algae[J]. Phycologia, 2013,52: 14–24.
[18] 潘禹, 王华生, 刘祖文,等. 微藻废水生物处理技术研究进展[J]. 应用生态学报. 2019,30(7):2490-2500.
[19] Garcã D, Posadas E, Blanco S, et al. Evaluation of the dynamics of microalgae population structure and process performance during piggery wastewater treatment in algal-bacterial photobioreactors[J]. Bioresour Technol. 2018, 248: 120-126.
[20] Wang X, Ni X, Cheng Q, et al. Vetiver and Dictyosphaerium sp. co-culture for the removal of nutrients and ecological inactivation of pathogens in swine wastewater[J]. Journal of Advanced Research. 2019, 20: 71-78.
[21] Godos ID, Vargas VA, Blanco S, et al. A comparative evaluation of microalgae for the degradation of piggery wastewater under photosynthetic oxygenation[J]. 2010, 101(14): 5150-5158.
[22] 朱丽娜, 姜海, 诸东海, 等. 分散养殖污染治理中政府定位及公共服务供给研究[J], 农业环境与发展, 2013, 2: 7-10.
[23] Al-Homaidan AA, Alabdullatif JA, Al-Hazzani AA, et al. Adsorptive removal of cadmium ions by Spirulina platensis dry biomass[J]. Saudi Journal of Biological Sciences. 2015, 22(6): 795-800.
[24] Alam MA, Wan C, Zhao XQ, et al. Enhanced removal of Zn2+ or Cd2+ by the flocculating Chlorella vulgaris JSC-7[J]. Journal of Hazardous Materials. 2015, 289: 38-45.
[25] 王愿珠, 程鹏飞, 刘德福,等. 生物膜贴壁培养小球藻净化猪粪沼液废水的效果[J]. 环境科学. 2017, 38(8): 3354-3361.