Advances in International Computer Science
Advances in International Computer Science. 2023; 3: (2) ; 10.12208/j.aics.20230018 .
总浏览量: 1082
北方民族大学
*通讯作者: 李虎飞,单位:北方民族大学;
本文研究了COVID-19传染病模型的参数反演问题. 首先建立COVID-19无症状感染者传染病的SEAIRD模型. 其次,利用反问题法将模型转化为目标函数的最小问题,利用改进的遗传算法获取模型参数. 最后对参数进行了敏感性分析. 结果表明,改进的遗传算法对新冠肺炎疫情模型的参数反演效果良好.
In this paper, parameter inversion of COVID-19 infectious disease model is studied. Firstly, the SEAIRD model of infectious disease in asymptomatic COVID-19 infected persons was established. Secondly, the inverse problem method is used to transform the model into the minimum problem of the objective function, and the improved genetic algorithm is used to obtain the model parameters. Finally, the sensitivity of the parameters was analyzed. The results show that the improved genetic algorithm is effective in parameter inversion of the novel coronavirus epidemic model.
[1] Ciotti M, Ciccozzi M, Terrinoni A, et al. The COVID-19 pandemic[J]. Critical reviews in clinical, laboratory sciences, 2020, 57(6): 365-388.
[2] Lipsitch M, Swerdlow D L, Finelli L. Defining the epidemiology of Covid-19—studies needed[J]. New England journal of medicine, 2020, 382(13): 1194-1196.
[3] Bulut C, Kato Y. Epidemiology of COVID-19[J]. Turkish journal of medical sciences, 2020, 50(9): 563-570.
[4] Mandal M, Jana S, Nandi S K, et al. A model based study on the dynamics of COVID-19: Prediction and control[J]. Chaos, Solitons & Fractals, 2020, 136: 109889.
[5] Carcione J M, Santos J E, Bagaini C, et al. A simulation of a COVID-19 epidemic based on a deterministic SEIR model[J]. Frontiers in public health, 2020, 8: 230.
[6] Ivorra B, Ferrández M R, Vela-Pérez M, et al. Mathematical modeling of the spread of the coronavirus disease 2019 (COVID-19) taking into account the undetected infections. The case of China[J]. Communications in nonlinear science and numerical simulation, 2020, 88: 105303.
[7] Rapolu T, Nutakki B, Rani T S, et al. A time-dependent seird model for forecasting the COVID-19 transmission dynamics[J]. medRxiv, 2020: 2020.05. 29.20113571.
[8] Oran D P, Topol E J. Prevalence of asymptomatic SARS-CoV-2 infection: a narrative review[J]. Annals of internal medicine, 2020, 173(5): 362-367.
[9] Paltiel A D, Zheng A, Walensky R P. Assessment of SARS-CoV-2 screening strategies to permit the safe reopening of college campuses in the United States[J]. JAMA network open, 2020, 3(7): e2016818-e2016818.
[10] Denny T N, Andrews L, Bonsignori M, et al. Implementation of a pooled surveillance testing program for asymptomatic SARS-CoV-2 infections on a college campus—Duke University, Durham, North Carolina, August 2–October 11, 2020[J]. Morbidity and Mortality Weekly Report, 2020, 69(46): 1743.
[11] Li R, Pei S, Chen B, et al. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2)[J]. Science, 2020, 368(6490): 489-493.
[12] Fracchia J A, Motta J, Miller L S, et al. Evaluation of asymptomatic microhematuria[J]. Urology, 1995, 46(4): 484-489.
[13] Lassas M, Siltanen S. Foreword: inverse problems in biology[J]. Journal of mathematical biology, 2013, 67: 1-1.
[14] Jameson A, Kreindler E. Inverse problem of linear optimal control[J]. SIAM Journal on Control, 1973, 11(1): 1-19.
[15] Stevens M, Sunseri I, Alexanderian A. Hyper-differential sensitivity analysis for inverse problems governed by ODEs with application to COVID-19 modeling[J]. Mathematical Biosciences, 2022, 351: 108887.
[16] Vogel C R. Computational methods for inverse problems[M]. Society for Industrial and Applied Mathematics, 2002.
[17] Kaipio J, Somersalo E. Statistical and computational inverse problems[M]. Springer Science & Business Media, 2006.
[18] Liu X, Hewings G, Wang S, et al. Modelling the situation of COVID-19 and effects of different containment strategies in China with dynamic differential equations and parameters estimation[J]. MedRxiv, 2020: 2020.03. 09.20033498.
[19] Marinov T T, Marinova R S. Dynamics of COVID-19 using inverse problem for coefficient identification in SIR epidemic models[J]. Chaos, Solitons & Fractals: X, 2020, 5: 100041.
[20] Godio A, Pace F, Vergnano A. SEIR modeling of the Italian epidemic of SARS-CoV-2 using computational swarm intelligence[J]. International journal of environmental research and public health, 2020, 17(10): 3535.
[21] Krivorot’ko O I, Kabanikhin S I, Zyat’kov N Y, et al. Mathematical modeling and forecasting of COVID-19 in Moscow and Novosibirsk region[J]. Numerical Analysis and Applications, 2020, 13: 332-348.
[22] Katoch S, Chauhan S S, Kumar V. A review on genetic algorithm: past, present, and future[J]. Multimedia Tools and Applications, 2021, 80: 8091-8126.
[23] Wei X, Duan X, Chen L, et al. Optimal multi-objective distributed generation location and capacity by elite strategy genetic algorithm considering timing characteristics[C]//E3S Web of Conferences. EDP Sciences, 2020, 185: 01018.
[24] Raue A, Becker V, Klingmüller U, et al. Identifiability and observability analysis for experimental design in nonlinear dynamical models[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2010, 20(4): 045105.
[25] Krivorotko O I, Andornaya D V, Kabanikhin S I. Sensitivity analysis and practical identifiability of some mathematical models in biology[J]. Journal of Applied and Industrial Mathematics, 2020, 14: 115-130.
[26] Long J, Khaliq A Q M, Furati K M. Identification and prediction of time-varying parameters of COVID-19 model: a data-driven deep learning approach[J]. International journal of computer mathematics, 2021, 98(8): 1617-1632.