Journal of Chemistry and Chemical Research
Journal of Chemistry and Chemical Research. 2022; 2: (3) ; 10.12208/j.jccr.20220018 .
总浏览量: 797
成都锦城学院建筑学院 四川成都
*通讯作者: 兰奕珩,单位:成都锦城学院建筑学院 四川成都;
古代玻璃制品的表面特征及化学成分含量进行玻璃制品的分析与鉴别,对所给数据进行预处理,基于多元线性回归建立相关统计模型,进行统计分析古代玻璃表面有无风化化学成分规律。使用处理完成后的数据,完成古代玻璃表面特征与其是否分化的Spearman秩相关关系,得到相关系数,其中玻璃类型的相关性系数最高,再运用卡方独立性检验验证其结论正确,并得到玻璃表面特征与是否风化之间都具有中等程度差异性。使用独立样本T校验得到氧化钠,氧化钾,氧化铜,氧化铅,二氧化硫的含量是有无风化化学成分分析统计的关键。
The surface characteristics and chemical composition content of ancient glass products are analyzed and identified. The given data are preprocessed, and a relevant statistical model is established based on multiple linear regression to statistically analyze whether there are weathering chemical composition rules on the surface of ancient glass. Using the processed data, complete the Spearman rank correlation between the surface characteristics of ancient glass and whether it is differentiated, and obtain the correlation coefficient, among which the correlation coefficient of glass type is the highest, and then use the chi-square independence test to verify that the conclusion is correct, and obtain the glass surface There is a moderate degree of variability in character and whether or not it is weathered. Using the independent sample T calibration to obtain the contents of sodium oxide, potassium oxide, copper oxide, lead oxide and sulfur dioxide is the key to the analysis and statistics of chemical composition with or without weathering.
[1] 王承遇,陶瑛.硅酸盐玻璃的风化[J].硅酸盐学报,2003(01):78-85.
[2] 许凤雯,狄靖月,李艳,阮燕云,包红军.长江上游流域面雨量与主要水电站发电能力关系分析[J].水电能源科学,2021,39(10):22-26.
[3] 王重阳,马菁华,吴睿钰,严泽凡.基于BP神经网络的水华预测模型及其敏感性分析
[4] 吴云,雷建文,鲍丽山,李春哲.基于改进灰色关联分析与蝙蝠优化神经网络的短期负荷预测[J].电力系统自动化,2018,42(20):67-72.
[5] 贺超峰,华心祝,马菁花,曹永模,陈康.基于BP神经网络的回采巷道围岩稳定性分类[J].矿业工程研究,2012,27(03):6-9.