[email protected]

化学与化工研究

Journal of Chemistry and Chemical Research

您当前位置:首页 > 精选文章

Journal of Chemistry and Chemical Research. 2022; 2: (3) ; 10.12208/j.jccr.20220017 .

Composition analysis and identification of glass products based on classification and K-means + +
基于分类研判与 K-Means++的玻璃制品的成分分析与鉴别

作者: 刘雅旭 *

廊坊师范学院

*通讯作者: 刘雅旭,单位:廊坊师范学院;

引用本文: 刘雅旭 基于分类研判与 K-Means++的玻璃制品的成分分析与鉴别[J]. 化学与化工研究, 2022; 2: (3) : 4-6.
Published: 2022/12/30 10:05:27

摘要

古代玻璃在风化过程中,由于内部元素与环境元素进行大量交换,导致其成分比例发生变化,从而影响对其类别的正确判断,本文通过对已知数据进行统计性分析进行相关的分类研判并采用无监督学习的K-means++算法对玻璃制品成分进行分析与鉴别。首先进行数据预处理,根据题目要求,删除编号为15和17的两条错误数据, 将颜色为空值的部分根据风化程度规律设定为黑色处理,将其他空值进行填“0”处理,进行接下来的计算首先针对四个定类变量使用卡方检验进行分析,根据显著性P值是否小于0.05判断出玻璃类型和颜色与表面风化存在显著性差异,与纹饰不存在显著性差异,在此基础上进行效应量化分析,其中包含phi、Crammer's V、列联系数与 lambda。

关键词: 玻璃成分鉴别;卡方检验;加权平均预测;系统聚类;K-Means++

Abstract

In the weathering process of ancient glass, due to a large amount of exchange between internal elements and environmental elements, the composition proportion of ancient glass changed, which affected the correct judgment of its category. This paper conducts relevant classification research and judgment through statistical analysis of known data, and uses K-means++algorithm without supervision to analyze and identify the composition of glass products. First, conduct data preprocessing, delete the two wrong data numbered 15 and 17 according to the requirements of the title, set the part with blank color as black according to the weathering degree law, fill in "0" for other blank values, and conduct the next calculation. First, use chi square test to analyze the four categorical variables, According to whether the significance P value is less than 0.05, it can be judged that there is a significant difference between glass type and color and surface weathering, and there is no significant difference between glass type and color and ornamentation. On this basis, quantitative analysis of effects is conducted, including phi, Crammer's V, contingency coefficient and lambda

Key words: glass composition identification; Chi square test; Weighted average forecast; System clustering; K-Means

参考文献 References

[1] 崔汝麦,司守奎 .数据可视化处理的数学模型[J].海军航空工程学院学报,2010,25(01):105-108+112.

[2] 刘利红,陈亚峰.基于加权平均算法和 Middle Plane 网格的保险杠开模收缩率预测方法[J]. 塑料科技,2021,49(07):133-136

[3] 韩存鸽, 刘长勇. 一种改进的K-Means算法[J]. 闽江学院学报, 2019, 40(5): 1-5.

[4] 王菲菲, 李秦, 张梦佳. k-means聚类算法的改进研究[J]. 甘肃科技纵横, 2017, 46(3): 68-70+83.

[5] 尹化荣, 陈莉, 张永新, 等. 基于RUSBoost和积矩系数的神经网络优化算法[J]. 计算机应用研究, 2018, 35(9): 2592-2596.

[6] 尹絮童. RUSBoost算法在不平衡数据集上的应用[D]: [硕士学位论文]. 大连: 大连理工大学, 2018.