[email protected]

物理科学与技术研究

Physical Sience and Technical Research

您当前位置:首页 > 精选文章

Physical Sience and Technical Research. 2023; 3: (1) ; 10.12208/j.pstr.20220008 .

Research progress and application of organic-inorganic Perovskite Ferroelectric Materials
有机-无机钙钛矿结构铁电材料的研究进展与应用

作者: 俞亮1,2,3, 岳文锋1,2,3, 蔡亚丽2,4, 张冲2,4, 刘丽霞1,2, 贾婷婷1,2,4 *, 郭全胜4, 于淑会1,2

1 中国科学院深圳先进技术研究院先进材料科学与工程研究所 广东深圳

2 深圳先进电子材料国际创新研究院 广东深圳

3 中国科学技术大学纳米学院 江苏苏州

4 湖北大学材料科学与工程学院 湖北武汉

*通讯作者: 贾婷婷,单位: 湖北大学材料科学与工程学院 湖北武汉;

引用本文: 俞亮, 岳文锋, 蔡亚丽, 张冲, 刘丽霞, 贾婷婷, 郭全胜, 于淑会 有机-无机钙钛矿结构铁电材料的研究进展与应用[J]. 物理科学与技术研究, 2023; 3: (1) : 1-12.
Published: 2022/12/29 18:14:41

摘要

近年来,有机-无机杂化钙钛矿材料在电子信息研究领域逐渐崭露头角,其独特的结构兼容性和可调节性可使材料性能共存与耦合。使得该材料具有光学带隙可调、外部量子效率高、载流子迁移率高、寿命长以及扩散长度长等优点为一体。其中以铁电材料为代表,它与传统材料相比具有显著优势,如:材料的合成路径简单、重量轻、热稳定性高、机械灵活性高等。不仅如此,一些有机-无机杂化铁电材料还具有高于室温的居里温度以及优异的铁电性能和压电性能等。基于上述优点,该类材料近些年来受到了科研人员的广泛关注和青睐。然而,用于器件方面应用的有机-无机杂化铁电材料,在相关设计和机理方面尚不完善,这方面仍需要进一步探索。本文综述了近年来报道的一系列有机-无机杂化铁电材料和相关材料的物理特性。概述了传统无机钙钛矿材料的局限性,并以有机-无机铁电体材料所具有的优势,来弥补这方面的不足。详细的介绍了铁电材料的相关优异的物理性质与应用领域的联系。最后,总结概括一些前人的研究,对一些铁电分子的改进方法做出总结,对铁电材料在今后发展趋势和应用前景提出展望。

关键词: 有机-无机杂化钙钛矿;铁电材料;物理性质;器件

Abstract

In recent years, organic-inorganic hybrid perovskite materials have gradually emerged in the field of electronic information research. Their unique structural compatibility and adjustability can make the material properties coexist and couple. The material has the advantages of adjustable optical band gap, high external quantum efficiency, high carrier mobility, long lifetime and long diffusion length. Among them, ferroelectric materials have significant advantages over traditional materials, such as simple synthesis path, light weight, high thermal stability and high mechanical flexibility. Moreover, the Curie temperature of some organic-inorganic hybrid ferroelectric materials are above room temperature besides the excellent ferroelectric and piezoelectric properties. Based on the above advantages, organic-inorganic hybrid perovskite materials have been widely concerned and favored by researchers in recent years. However, the organic-inorganic hybrid ferroelectric materials used in devices are not perfect in the related design and mechanism, which still needs further exploration. This paper reviews the physical properties of a series of organic-inorganic hybrid ferroelectric materials and the related materials reported. The excellent physical properties and applications of the organic-inorganic hybrid ferroelectric materials are introduced in detail. Finally, the research progress of some organic-inorganic hybrid ferroelectric materials are summarized, and the development trend and application prospect of the organic-inorganic hybrid ferroelectric materials are discussed.

Key words: Organic inorganic hybrid perovskite;Ferroelectric Materials; Ferroelectric materials; Physical property; Device

参考文献 References

[1] 王哲焱,冯涛,张学俊.有机-无机杂化钙钛矿材料的研究进展[J].现代化工 2019,01:0150253-4320.

[2] 韦慧,汤洋,尤晖.溶液法制备有机-无机杂化钙钛矿薄膜的研究进展[J].化工进展 2018,37(07): 2672-2685.

[3] Xiong Y A, Feng Z J, Jing Z Y, et al. Recent progress in molecular ferroelectrics with perovskite structure (in Chinese)[J]. Chin Sci Bull, 2020, 65: 916–930.

[4] Jin H H,Sang HI,Noh JH et al.Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole con ductorsJI[J].Nature Photonics 2013,7(6):486-491.

[5] 汤笑,寇良志.二维铁电材料在物理化学领域的应用研究进展[J].科学通报 2021,66:580–590 .

[6] 王爱丽, et al."钙钛矿太阳电池的研究进展与关键挑战." [J].硅酸盐学报49.07(2021):1306-1322. 

[7] 张钰,and 周欢萍."有机-无机杂化钙钛矿材料的本征稳定性."[J]. 物理学报 68.15(2019):137-147.

[8] Da-Wei Fu, Hong-Ling Cai et al.Diisopropylammonium Bromide Is a High-Temperature Molecular Ferroelectric Crystal[J].Science 2013,339, 6118.

[9] Yu-Meng You, Wei-Qiang Liao, et al.An organic-inorganic perovskite ferroelectric with large piezoelectric response[J].Science 2017,357, 306–309.

[10] 赵兰天,刘晨鹤等.基于铁电材料的人工突触器件的研究进展.功能材料与器件学报[J].2020,3, 6.

[11] Heng-Yun Ye, Yuan-Yuan Tang.et al.Metal-free three-dimensional perovskite ferroelectrics[J].Science 2018,361, 151–155 .

[12] 吴红迪,蔡苇等2D有机-无机杂化钙钛矿材料光伏性能优化研究进展[J]电子元件与材料.2020,39,11. 

[13] 郭宁, et al."基于二维有机无机杂化钙钛矿的薄膜晶体管." [J]物理学报 69.19(2020):328-336.

[14] 董旭, et al."有机/无机杂化钙钛矿太阳能电池光照稳定性及其提升方法."[J]科学通报 61.09(2016):1025.

[15] Biao Wang.Curie-Weiss law in thin-film ferroelectrics[J].Journal of Applied Physics2006.100, 044114.

[16] M. Fahnle and J. Souletie.Comment on ‘‘Generalized Curie-Weiss Law’’[J].Phys. Rev. B1985,32, 3328.

[17] Chao-Ran Huang, Xuzhong Luo,et al.A multiaxial lead-free two-dimensional organic-inorganic perovskite ferroelectric.Natl Sci Rev 2021, 8, 232.

[18] Zhenyue Wu, Shunning Li.et al.Intercalation-driven ferroelectric-to-ferroelastic conversion in a layered hybrid perovskite crystal.Nat Commun 2022,13:3104.

[19] Zhao Hu et al.van der Waals force layered multiferroic hybrid perovskite (CH3NH3)2CuCl4single crystals.Phys[J].Chem. Chem. Phys 2020,22, 4235-4239.

[20] Daibei Yang, Lingheng Luo.et al.Rational design of one-dimensional hybrid organic–inorganic perovskites with roomtemperature ferroelectricity and strong piezoelectricity[J].Mater. Horiz 2019, 6, 1463.

[21] Tian-Meng Guo, Fei-Fei Gao.et al.Mechanical and acoustic properties of a hybrid organic–inorganic perovskite, TMCM-CdCl3, with large piezoelectricity[J].APL Materials 2020,8, 101106.

[22] Asif Abdullah Khan, Guangguang Huang.et al.Superior transverse piezoelectricity in organic-inorganic hybrid perovskite nanorods for mechanical energy harvesting.Nano Energy 2021,86,106039.

[23] Wei-Qiang Liao, Dewei Zhao.et al.A molecular perovskite solid solution with piezoelectricity stronger than lead zirconate titanate[J].Science 2019,363, 1206-1210.

[24] G.H.Jonker.On the dielectric curie-weiss law and diffuse phase transition in ferroelectrics[J].Materials Research Bulletin 1983,18, 3, 301-308.

[25] Tongle Bu, Shengwei Shi,et al.Low-Temperature Presynthesized Crystalline Tin Oxide for Efficient Flexible Perovskite Solar Cells and Modules[J].ACS Applied Materials & Interfaces 2018,10(17), 14922-14929.

[26] Fo-Ling Zhoua,Shuang-Teng Song,et al.A hybrid multifunctional perovskite with dielectric phase transition and broadband red-light emission[J].Journal of Molecular Structure 2021 1239,130468 .

[27] Jie Li, Yang Zhu.et al.Ferroelasticity in Organic-inorganic Hybrid Perovskites[J].Chem. Eur. J 2022, e202201005.

[28] 陈大任. 铁电性和铁弹性的结构基础[J]. 无机材料学报, 1973(1).

[29] Da-Wei Fu, Ji-Xing Gao,et al,High-Tc Enantiomeric Ferroelectrics Based on Homochiral Dabco-derivatives (Dabco = 1,4-Diazabicyclo[2.2.2]octane)[J].Angew. Chem. Int. Ed. 2020, 50(40): 17477–17481.

[30] Wan-Ying Zhang. et al.Precise Molecular Design of High‑Tc 3D Organic−Inorganic Perovskite Ferroelectric: [MeHdabco]RbI3 (MeHdabco = N‑Methyl1,4-diazoniabicyclo[2.2.2]octane).J. Am. Chem. Soc. 2017, 139, 10897−10902

[31] Yuan-Yuan Tang, Yong Ai,et al. H/F-Substitution-Induced Homochirality for Designing High-Tc Molecular Perovskite Ferroelectrics[J].Adv.Mater. 2019,31, 1902163.

[32] Yuan-Yuan Tang,Yong Ai,et al,H/F-Substitution-Induced Homochirality for Designing High-Tc M[J].olecular Perovskite Ferroelectrics[J].Adv. Mater. 2019, 31(29): 1902163.

[33] Dongying Fu, Zuoming Hou,et al.Multiaxial Ferroelectricity and Ferroelasticity in a Chiral Perovskite.Chemistry of Materials2022,34(7), 3518-3524

[34] Hwa Seob Choi, Shunning Li,et al.Tailoring the coercive field in ferroelectric metalfree perovskites by hydrogen bonding[J]. Nat Commun 2022,13:794

[35] Weidong Tang,Jinshuai Zhang,et al,Substitutional doping of hybrid organic–inorganic perovskite crystals for thermoelectrics[J].Mater. Chem. A 2020, 8, 13594.

[36] Lixia Ren,Yutao Wang.et al.Tuning Magnetism and Photocurrent in Mn-Doped Organic–Inorganic Perovskites[J].phys. Chem. Lett 2020, 11(7): 2577–2584.

[37] 王瑾,向成密,and 张媛媛."太阳能电池CH3NH3PbI3的制备工艺与光电性能研究."[J].光源与照明.2021.08:43-44.

[38] Peiqi Wang,Jinjin Zhao. et al.Photo-induced ferroelectric switching in perovskite CH3NH3 bI3 films[J].Nanoscale 2017, 9, 3806.

[39] Mallory Mativenga, Jeoungmin Ji,et al,Ambient Air Stability of Hybrid Perovskite Thin-Film Transistors by Ambient Air Processing[J].Adv. Mater. Interfaces 2020, 7(6): 1901777.

[40] Anastasia Vassilakopoulou, Dionysios Papadatos. et al.Room temperature light emitting diode based on 2D hybrid organic-inorganic low dimensional perovskite semiconductor[J].Applied Materials 2016, 5: 128–133.

[41] Peng You, Guanqi Tang.et al.Two-dimensional materials in perovskite solar cells[J].Materials Today Energy 2019,11: 128-158

[42] Feng Tang,Qi Chen. t al.Mixture interlayer for high performance organic-inorganic perovskite photodetectors[J].Appl. Phys. Lett 2016,109, 123301.

[43] Haonan Pei , Xiaokun Li.et al.LaFeO3 perovskite nanoparticles for efficient capture of elemental mercury from coal-fired flue gas[J].Fuel 2022,309 ,122134.

[44] Myung-Yeon Cho, Sunghoon Kim,et al,Perovskite-Induced Ultrasensitive and Highly Stable Humidity Sensor Systems Prepared by Aerosol Deposition at Room Temperature[J].Adv. Funct. Mater 2020, 30(3): 1907449.

[45] Farjana Haque,et al,Highly Sensitive and Ambient Air-Processed Hybrid Perovskite TFT T emperature Sensor[J]..IEEE ELECTRON DEVICE LETTERS 2020,41,7.

[46] Fangyuan Lin,Feiming Li,et al, MnII-Doped Cesium Lead Chloride Perovskite Nanocrystals: Demonstration of Oxygen Sensing Capability Based on Luminescent Dopants and Host-Dopant Energy Transfer[J].ACS Appl. Mater. Interfaces 2018, 10(27):23335–23343.

[47] Nidhi Gupta, Omita Nanda,et al.A new inorganic-organic hybrid halide perovskite thin film based ammonia sensor[J]..Organic Electronics 2018,58 ,202–206.

[48] Wenzhao Sun, Can Huang,et al,On-Chip-Integrated Methylammonium Halide Perovskite Optical Sensors[J].Adv.Optical Mater 2019, 7, 1801308.

[49] Fengren Cao,et al,Polarized Ferroelectric Field-Enhanced Self-Powered Perovskite Photodetector[J].ACS Photonics 2018, 5, 3731−3738.

[50] Peiqi Wang,et al,Photo-induced ferroelectric switching in perovskite CH3NH3PbI3 films[J].Nanoscale 2017, 9, 3806–3817.

[51] Hwa Seob Choi,et al,Tailoring the coercive field in ferroelectric metalfree perovskites by hydrogen bonding,Nat Commun 2022, 13:794.

[52] Yilin Sun, Changjiu Teng,et al, Photomodulated Hysteresis Behaviors in Perovskite Phototransistors with Ultra-Low Operating Voltage[J].Phys. Chem. C 2017, 121(21): 11665−11671.