Journal of Cell and Molecular Biology Research
Journal of Cell and Molecular Biology Research. 2022; 2: (1) ; 10.12208/j.ijcmbr.20220006 .
总浏览量: 1081
南通大学 江苏南通
*通讯作者: 张华,单位:南通大学 江苏南通;
基因组编辑中CRISPR/Cas系统应用比较广泛,CRISPR/Cas系统能准确切割、识别DNA、RNA序列,在对目标序列识别过程中,CRISPR/Cas系统在Cas12、13蛋白经RNA引导,不仅能对目标序列进行识别,让靶向切割活性得到启动,且在DNA、RNA分子及其他单链中也表现出非特异性切割活性,将荧光基团报告核酸分子加入反应体系,通过荧光信号还能观察到目标核酸分子所在,且借助Cas蛋白的不同切割偏好,还能同时检测多种靶标分子。
The CRISPR/Cas system is widely used in genome editing. The CRISPR/Cas system can precisely cleave and recognize DNA and RNA sequences. In the process of recognizing a target sequence, the CRISPR/Cas system not only recognizes the target sequence and initiates target-cleaving activity, but also shows non-specific cleavage activity on single strands such as DNA and RNA molecules, and emits fluorescence. is appended. Group of reporter nucleic acid molecules to be added In the reaction system, the positions of target nucleic acid molecules can be observed by fluorescence signals, and multiple target molecules can be detected simultaneously due to the different cleavage priorities of Cas proteins.
[1] Koo B, Kim D, Kweon J, et al. CRISPR/dCas9-mediated biosensor for detection of tick-borne diseases[J]. Sensors and Actuators B: Chemical, 2018, 273: 316-321.
[2] Geraldi A, Giri-Rachman E A. Synthetic biology-based portable in vitro diagnostic platforms[J]. Alexandria journal of medicine, 2018, 54(4): 423-428.
[3] 李甜,李娜.基于CRISPR/Cas的生物传感平台在分子诊断中的应用[J].分析测试学报,2022,41(4):520-528.
[4] 徐文娟,宋丹,陈丹,等.基于CRISPR/Cas生物传感原理的病原菌检测技术研究进展[J].中国生物工程杂志,2021,41(8):67-74.
[5] GADWAL, A., ROY, D., KHOKHAR, M., et al. CRISPR/ Cas-New Molecular Scissors in Diagnostics and Therapeutics of COVID-19[J]. Indian journal of clinical biochemistry: IJCB,2021,36(4):459-467.
[6] Koo B, Kim D, Kweon J, et al. CRISPR/dCas9-mediated biosensor for detection of tick-borne diseases[J]. Sensors and Actuators B: Chemical, 2018, 273: 316-321.
[7] Aquino-Jarquin G. CRISPR-Cas14 is now part of the artillery for gene editing and molecular diagnostic[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 2019, 18: 428-431.
[8] 孙秀兰,付旭冉,鲍琦,等.新一代诊断技术:CRISPR系统及其在分子诊断中的应用[J].食品与生物技术学报,2022,41(7):57-70.
[9] 曹亚玲,任锋.基于CRISPR/Cas技术的核酸即时检测研究进展[J].中华检验医学杂志,2021,44(9):864-867.
[10] SINGH, DESH DEEPAK, VERMA, RAVI, TRIPATHI, SUBHASH K., et al. Breast Cancer Transcriptional Regulatory Network Reprogramming by using the CRISPR/ Cas9 System: An Oncogenetics Perspective[J]. 2021,21(31):2800-2813.
[11] Batista A C, Pacheco L G C. Detecting pathogens with Zinc-Finger, TALE and CRISPR-based programmable nucleic acid binding proteins[J]. Journal of microbiological methods, 2018, 152: 98-104.
[12] Liu L, Yang D, Liu G. Signal amplification strategies for paper-based analytical devices[J]. Biosensors and Bioelectronics, 2019, 136: 60-75.
[13] Otlu B. CRISPR-Cas System: A Brief History and Future in the Diagnosis and Treatment of Infectious Diseases[J]. Infectious Diseases and Clinical Microbiology, 2019, 1(1): 2-6.
[14] Jones K A, Zinkus-Boltz J, Dickinson B C. Recent advances in developing and applying biosensors for synthetic biology[J]. Nano Futures, 2019, 3(4): 042002.
[15] Kim C M, Smolke C D. Biomedical applications of RNA-based devices[J]. Current Opinion in Biomedical Engineering, 2017, 4: 106-115.
[16] Choi K R, Jang W D, Yang D, et al. Systems metabolic engineering strategies: integrating systems and synthetic biology with metabolic engineering[J]. Trends in biotechnology, 2019, 37(8): 817-837.
[17] 史铠,雷春阳,聂舟.CRISPR/Cas技术在核酸检测中的应用进展[J].分析测试学报,2018,37(10):1217-1220.
[18] GONG, SHAOHUA, ZHANG, SHIQI, LU, FEI, et al. CRISPR/Cas-Based In Vitro Diagnostic Platforms for Cancer Biomarker Detection[J]. Analytical chemistry, 2021, 93(35): 11899-11909.