Journal of Cell and Molecular Biology Research
Journal of Cell and Molecular Biology Research. 2022; 2: (1) ; 10.12208/j.ijcmbr.20220004 .
总浏览量: 1319
中国药科大学 江苏南京
*通讯作者: 戴宇莹,单位:中国药科大学 江苏南京;
Sirtuins(SIRTs)蛋白家族是一类进化上高度保守的烟酰腺嘌呤二核苷酸(NAD+)依赖的去酰基酶, 多个成员在不同物种中都具有延长寿命的作用,被称为长寿蛋白家族。哺乳动物SIRTs共有7个成员(SIRT1-7)。研究证实:SIRTs是线粒体中的主要去乙酰基酶,通过多个代谢调节因子的去乙酰化以维持线粒体稳态。SIRT1是重要的核内脱乙酰基酶,其广泛参与线粒体稳态和其他多种生物过程,如凋亡、炎症和代谢。SIRT3主要定位在线粒体,并在线粒体稳态和代谢调节中发挥重要作用。线粒体稳态失衡严重影响神经元功能,并促进神经退行性类疾病的发生发展。因此,靶向改善线粒体稳态失衡和由其引起的细胞病理改变可能是干预神经退行性疾病的重要靶点。
SIRTs are evolutionary conservedNAD+dependent deacylases. SIRTs activity has been implicated in life span extension.In mammals, seven SIRTs have been identified named as SIRT1-7.SIRTs are the maindeacetylases in mitochondria and act askey regulators for the deacetylation of metabolic agents to maintain mitochondrial homeostasis. SIRT1is a critical nuclear deacetylase that participates in a wide range of biological processes, such as apoptosis, inflammation and metabolism. SIRT3 islocated in mitochondria and involved in regulating mitochondrial homeostasis and metabolism. The imbalance of mitochondrial homeostasis triggersneuronal malfunction, which is a feature in the pathogenesis of neurodegenerative diseases. Thus, targetingimpairedmitochondrial homeostasis and the sequential pathological damage may be an important strategyfor intervention of neurodegenerative diseases.
[1] Whitaker, R., et al., Increased expression of Drosophila Sir2 extends life span in a dose-dependent manner. Aging (Albany NY), 2013. 5(9): p. 682-91.
[2] Li, Y., et al., A programmable fate decision landscape underlies single-cell aging in yeast. Science, 2020. 369(6501): p. 325-329.
[3] Nakagawa, T. and L. Guarente, Sirtuins at a glance. Journal of Cell Science, 2011. 124(6): p. 833-838.
[4] Michishita, E., et al., Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Molecular Biology of the Cell, 2005. 16(10): p. 4623-4635.
[5] Tsukamoto, Y., J. Kato, and H. Ikeda, Silencing factors participate in DNA repair and recombination in Saccharomyces cerevisiae. Nature, 1997. 388(6645): p. 900-903.
[6] Bonkowski, M.S. and D.A. Sinclair, Slowing ageing by design: the rise of NAD(+) and sirtuin-activating compounds. Nature Reviews Molecular Cell Biology, 2016. 17(11): p. 679-690.
[7] Choudhary, C., et al., Lysine Acetylation Targets Protein Complexes and Co-Regulates Major Cellular Functions. Science, 2009. 325(5942): p. 834-840.
[8] Haigis, M.C. and D.A. Sinclair, Mammalian Sirtuins: Biological Insights and Disease Relevance. Annual Review of Pathology-Mechanisms of Disease, 2010. 5: p. 253-295.
[9] Panes, J.D., et al., Changes in PGC-1 alpha/SIRT1 Signaling Impact on Mitochondrial Homeostasis in Amyloid-Beta Peptide Toxicity Model. Frontiers in Pharmacology, 2020. 11.
[10] Chamberlain, K.A., et al., Oligodendrocytes enhance axonal energy metabolism by deacetylation of mitochondrial proteins through transcellular delivery of SIRT2. Neuron, 2021. 109(21): p. 3456-+.
[11] Lombard, D.B., et al., Mammalian sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Molecular and Cellular Biology, 2007. 27(24): p. 8807-8814.
[12] Chen, X.F., et al., SIRT5 inhibits peroxisomal ACOX1 to prevent oxidative damage and is downregulated in liver cancer. Embo Reports, 2018. 19(5).
[13] Roichman, A., et al., Restoration of energy homeostasis by SIRT6 extends healthy lifespan. Nature Communications, 2021. 12(1).
[14] Yan, W.W., et al., Arginine methylation of SIRT7 couples glucose sensing with mitochondria biogenesis. Embo Reports, 2018. 19(12).
[15] Shu, L., et al., ATAD3B is a mitophagy receptor mediating clearance of oxidative stress-induced damaged mitochondrial DNA. Embo Journal, 2021. 40(8).
[16] Ye, X., et al., Sirtuins in glucose and lipid metabolism. Oncotarget, 2017. 8(1): p. 1845-1859.
[17] Lee, I.H., et al., A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proceedings of the National Academy of Sciences of the United States of America, 2008. 105(9): p. 3374-3379.
[18] Mu, N., et al., Inhibition of SIRT1/2 upregulates HSPA5 acetylation and induces pro-survival autophagy via ATF4-DDIT4-mTORC1 axis in human lung cancer cells. Apoptosis, 2019. 24(9-10): p. 798-811.
[19] Poole, L.P. and K.F. Macleod, Mitophagy in tumorigenesis and metastasis. Cellular and Molecular Life Sciences, 2021. 78(8): p. 3817-3851.
[20] Sun, Y., et al., Inhibition of nuclear deacetylase Sirtuin-1 induces mitochondrial acetylation and calcium overload leading to cell death. Redox Biology, 2022. 53.
[21] Tseng, A.H.H., S.S. Shieh, and D.L. Wang, SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage. Free Radical Biology and Medicine, 2013. 63: p. 222-234.
[22] Longevity, O.M.C., Antiaging Properties of a Grape-Derived Antioxidant Are Regulated by Mitochondrial Balance of Fusion and Fission Leading to Mitophagy Triggered by a Signaling Network of Sirt1-Sirt3-Foxo3-PINK1-PARKIN (Retraction of Vol 2014, art no 345105, 2014). Oxidative Medicine and Cellular Longevity, 2022. 2022.
[23] Yu, L.M., et al., Polydatin attenuates chronic alcohol consumption-induced cardiomyopathy through a SIRT6-dependent mechanism. Food & Function, 2022. 13(13): p. 7302-7319.
[24] Ryu, D., et al., A SIRT7-Dependent Acetylation Switch of GABP beta 1 Controls Mitochondrial Function. Cell Metabolism, 2014. 20(5): p. 856-869.
[25] Hubbi, M.E., et al., Sirtuin-7 Inhibits the Activity of Hypoxia-inducible Factors. Journal of Biological Chemistry, 2013. 288(29): p. 20768-20775.
[26] Nguyen, T.T., et al., Loss of Miro1-directed mitochondrial movement results in a novel murine model for neuron disease. Proceedings of the National Academy of Sciences of the United States of America, 2014. 111(35): p. E3631-E3640.
[27] De Strooper, B. and E. Karran, The Cellular Phase of Alzheimer's Disease. Cell, 2016. 164(4): p. 603-615.
[28] Valla, J., et al., Reduced Posterior Cingulate Mitochondrial Activity in Expired Young Adult Carriers of the APOE epsilon 4 Allele, the Major Late-Onset Alzheimer's Susceptibility Gene. Journal of Alzheimers Disease, 2010. 22(1): p. 307-313.
[29] Mary, A., et al., Mitophagy in Alzheimer's disease: Molecular defects and therapeutic approaches. Molecular Psychiatry, 2022.
[30] Kobro-Flatmoen, A., et al., Re-emphasizing early Alzheimer's disease pathology starting in select entorhinal neurons, with a special focus on mitophagy. Ageing Research Reviews, 2021. 67.
[31] Chen, W.Y., et al., Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell, 2005. 123(3): p. 437-448.
[32] Kwon, H.S. and M. Oft, The ups and downs of SIRT1. Trends in Biochemical Sciences, 2008. 33(11): p. 517-525.
[33] Maiese, K., Targeting the core of neurodegeneration: FoxO, mTOR, and SIRT1. Neural Regeneration Research, 2021. 16(3): p. 448-455.
[34] Bai, N., et al., Inhibition of SIRT2 promotes APP acetylation and ameliorates cognitive impairment in APP/PS1 transgenic mice. Cell Reports, 2022. 40(2).
[35] Du, J.T., et al., Sirt5 Is a NAD-Dependent Protein Lysine Demalonylase and Desuccinylase. Science, 2011. 334(6057): p. 806-809.
[36] Peng, C., et al., The First Identification of Lysine Malonylation Substrates and Its Regulatory Enzyme. Molecular & Cellular Proteomics, 2011. 10(12).
[37] Haigis, M.C., et al., SIRT4 inhibits glutamate dehydrogehase and opposes the effects of calorie restriction in pancreatic beta cells. Cell, 2006. 126(5): p. 941-954.
[38] Hirschey, M.D., et al., SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature, 2010. 464(7285): p. 121-U137.
[39] Giralt, A., et al., Peroxisome Proliferator-activated Receptor-gamma Coactivator-1 alpha Controls Transcription of the Sirt3 Gene, an Essential Component of the Thermogenic Brown Adipocyte Phenotype. Journal of Biological Chemistry, 2011. 286(19): p. 16958-16966.
[40] Jung, E.S., et al., p53-dependent SIRT6 expression protects A beta 42-induced DNA damage. Scientific Reports, 2016. 6.