[email protected]

科学发展研究

Scientific Development Research

您当前位置:首页 > 精选文章

Scientific Development Research . 2022; 2: (5) ; 10.12208/j.sdr.20220146 .

A study on the adoption of remote ECG monitoring based on the theoryof protection motive and TPB theory
基于保护动机理论及TPB理论的远程心电监护采纳研究

作者: 赵人行 *, 赵景林

北京邮电大学经济管理学院 北京

黑龙江省科学技术协会 哈尔滨

*通讯作者: 赵人行,单位:北京邮电大学经济管理学院 北京;

引用本文: 赵人行, 赵景林 基于保护动机理论及TPB理论的远程心电监护采纳研究[J]. 科学发展研究, 2022; 2: (5) : 17-24.
Published: 2022/10/26 15:35:22

摘要

目的 通过计划行为理论(Theory of Planned Behavior—TPB)和保护动机理论融合,构建远程心电监护采纳模型,旨在解释用户对远程心电监护的采纳意愿的影响机制。方法 采用问卷调查形式,回收364份问卷,得到有效问卷336份,通过构建结构方程模型进行分析。结果 结构方程检验支持7个假设。兼容性、主观规范、感知疾病易感性、个人创新性、反应效能、自我效能可促进使用意愿。反应效能和自我效能对使用意愿正向影响最大,反应成本对使用意愿的负向影响非常显著。结论 反应效能和自我效能的提升可促进远程心电监护采纳,同时反应成本很可能导致服务不被采纳。服务提供者和相应开发商,可更多将有效服务推广给目标群体,提升体验,使操作更为人性化,提升反应效能和自我效能,与加强用户培训和指导,降低采纳可能带来的时间成本和资金支出,促进服务采纳。

关键词: 远程心电监护;结构方程模型;保护动机理论;计划行为理论

Abstract

Objective To construct the adoption behavior model of remote Electrocardiograph (ECG) monitoring by integrating the theory of planned behavior and protective motivation, in order to explain the influencing mechanism of use intention to adopt the remote ECG monitoring
Methods 364 questionnaires were collected.336 valid questionnaires were obtained. The structural equation model was constructed to analyze the results. Result The structural equation test supported proposed hypotheses: compatibility,subjective normative, perceived disease susceptibility,response-efficacy and self-efficacy could positively influence the use intention to adopt remote ECG monitoring; response-efficacy and self-efficacy has the most positive influence on behavior intention, while response cost has the most significant negative effect on use intention.
Conclusion   The improvement of response-efficacy and self-efficacy could promote the adoption of remote ECG monitoring service, while response-cost could probably fail the adoption of remote ECG monitoring service. The service provider and the developers, could promote effective service to the target users, to guarantee a better experience in order to enhance the response-efficacy and self-efficacy. They could also strengthen the training and guidance for users, to reduce the response cost , promoting the adoption of services.

Key words: Remote Electrocardiograph Monitoring; Structural Equation Model; Protection Motivation Theory; Theory of Planned Behavior

参考文献 References

[1] 李勇明,张元梵,叶昌荣,等.面向孕妇远程监护的智能信息处理方法研究进展综述[J].生物医学工程学杂志,2020(5).

[2] 余敏,许志,韦明.远程实时健康监护系统关键技术研究[J].航天医学与医学工程,2019(3).

[3] Wang H, Tao D, Yu N, Qu X. Understanding consumer acceptance of healthcare wearable devices: An integrated model of UTAUT and TTF. International journal of medical informatics. 2020,39:104156.

[4] Mceachan R R C, Conner M, Taylor N J, et al. Prospective prediction of health-related behaviours with the Theory of Planned Behaviour: a meta-analysis[J]. Health Psychology Review, 2011, 5(2):97-144.

[5] 鄂丽丽,洪静芳,谢伦芳.基于计划行为理论注册护士帮助住院患者戒烟行为的研究[J].中华疾病控制杂志,2016,20(5):443-446.

[6] 杜春燕,吴丝丝,刘红霞,等.肾移植受者服药意向影响因素研究[J].护理学杂志,2018,33(7):33-35.

[7] 贺育华,赵秋利,梁娜,等.计划行为理论在血脂异常护士饮食行为干预中的应用[J].护理学杂志,2017,32(2):92-95.

[8] 程艳然.基于计划行为理论的非酒精性脂肪性肝病患者中医健康管理行为意向研究[D].湖北中医药大学.

[9] Godin G, Valois P, Jobin J, et al. Prediction of intention to exercise of individuals who have suffered from coronary heart disease[J]. Journal of Clinical Psychology, 1991, 47(6):762-772.

[10] Blanchard C M, Courneya K S, Rodgers W M,. Is the theory of planned behavior a useful framework for understanding exercise adherence during phase II cardiac rehabilitation?[J]. Journal of Cardiopulmonary Rehabilitationand Prevention, 2003, 23(1):29-39.

[11] Mendez R, Rodrigues R, ME Cornélio. Development ofan instrument to measure psychosocial determinants of  physical activity behavior among coronary heart disease patients[J]. Revista da Escola de Enfermagem da U S P,2010, 44(3):584-596.

[12] SniehottaFalkoF,GorskiCharlotta,Araujo-Soares Vera. Adoption of community-based cardiac rehabilitation programsand physical activity following phase III cardiac rehabili-tation in Scotland: a prospective and predictive study. [J]. Psychology & health,2010,25(7):839-854.

[13] Rogers R W, Cacioppo J T, Petty R. Cognitive and physiological processes in fear appeals and attitude change:A revised theory of protection motivation[M]. 1983.

[14] B R J H A, A B T K. The Technology Acceptance Model: Its past and its future in health care[J]. Journal ofBiomedical Informatics, 2010, 43(1):159-172.

[15] Plotnikoff R C, Trinh L, Courneya K S,. Predictors of aerobic physical activity and resistance training among Canadian adults with type 2 diabetes: An application ofthe Protection Motivation Theory[J]. Psychology of Sport& Exercise, 2009, 10(3):320-328.

[16] Blanchard C M, Reid R D, Morrin L I. Does protectionmotivation theory explain exercise intentions and behavior during home-based cardiac rehabilitation? [J].J CardiopulmRehabilPrev, 2009, 29(3):188-192.

[17] 方晓义,蔺秀云,林丹华, et al.保护动机对农村流动人口性病艾滋病高危性行为的预测[J].心理学报, 2006, 38(6):877-885.

[18] 顾岩,丰小星,周莹莹,等.保护动机护理干预在冠状动脉介入术后患者自我管理中的应用[J].护理学报,2016,23(23):59-63.

[19] 刘英,田世宏.保护动机理论对社区糖尿病患者健康状况及自护水平的影响[J]. 临床护理杂志, 2016(5):11-13.

[20] Lee Y.Understanding anti-plagiarism software adoption: An extended protection motivation theory perspective[J].Decision Support Systems, 2011, 50(2):361-369.

[21] Wu I L,Li J Y, Fu C Y. The adoption of mobile healthcare by hospital's professionals: An integrative perspective[J]. Decision Support Systems, 2011, 51(3):587-596.

[22] Zhang L, Mcdowell W C. Am I Really at Risk? Determinants of Online Users' Intentions to Use Strong Passwords[J]. Journal of Internet Commerce, 2009, 8(3-4):180-197.

[23] Peace A G, Galletta D F, Thong J. Software Piracy in the Workplace: A Model and Empirical Test[J]. Journal of management information systems, 2003, 20(1):153-177.

[24] Workman M, Bommer W H, Straub D. Security lapses and the omission of information security measures: A threat control model and empirical test[J]. Computers in Human Behavior, 2008, 24(6):2799-2816.

[25] Yang H, Yu J, Zo H. User acceptance of wearable devices: An extended perspective of perceived value[J].Telematics and Informatics, 2016, 33(2):256-269.

[26] Knapp K J, Marshall T, Rainer R K, et al. Information security: management's effect on culture and policy[J]. Information Management & Computer Security, 2006, 14(1):24-36.

[27] Wu I L, Li J Y, Fu C Y. The adoption of mobile healthcare by hospital's professionals: An integrative perspective[J]. Decision Support Systems, 2011, 51(3):587-596.

[28] Li X, Wu C, Lu J, et al. Cardiovascular risk factors in China: a nationwide population-based cohort study[J]. The Lancet Public Health, 2020, 5(12):672-681.

[29] 王莉. TPB与PMT组合视角下的移动健康服务用户行为意愿研究[D].武汉纺织大学,2016.

[30] Guo X, Sun Y, Nan W, et al. The dark side of elderlyacceptance of preventive mobile health services in China[J]. Electronic Markets, 2012, 23(1):49-61.

[31] Huang J C. Remote health monitoring adoption model based on artificial neural networks[J]. Expert Systems with Applications, 2010, 37(1):307-314.

[32] 刘竞男. 人工智能辅助诊断系统医生采纳影响因素实证研究[D]. 合肥工业大学, 2019.

[33] Wu I L, Li J Y, Fu C Y. The adoption of mobile healthcare by hospital's professionals: An integrative perspective[J]. Decision Support Systems, 2011, 51(3):587-596.

[34] Li J, Ma Q, Chan A H,et al. Health monitoring throughwearable technologies for older adults: Smart wearables acceptance model[J]. Applied Ergonomics, 2019, 75:162-169.

[35] Deng Z, Mo X, Liu S. Comparison of the middle-aged and older users' adoption of mobile health services in China[J]. International Journal of Medical Informatics, 2014, 83(3):210-224.