[email protected]

国际计算机科学进展

Advances in International Computer Science

您当前位置:首页 > 精选文章

Advances in International Computer Science. 2022; 2: (3) ; 10.12208/j. aics.20220054 .

Requesting side congestion control method for Named Data Network based on flow prediction
基于流量预测的命名数据网络请求端拥塞控制方法

作者: 于泽洋 *, 常成, 李彤

陆军装甲兵学院信息通信系 北京

*通讯作者: 于泽洋,单位:陆军装甲兵学院信息通信系 北京;

引用本文: 于泽洋, 常成, 李彤 基于流量预测的命名数据网络请求端拥塞控制方法[J]. 国际计算机科学进展, 2022; 2: (3) : 13-18.
Published: 2022/9/21 17:45:27

摘要

本文旨在为命名数据网络(Named Data Network,NDN)设计一种基于调整请求端兴趣包发送窗口的拥塞控制方法。文中首先介绍了目前NDN中拥塞控制方法的研究成果,对请求端拥塞控制和网内节点拥塞控制两种思路的优劣进行了分析,然后提出了一种基于机器学习流量预测的请求端拥塞控制方案设计,并在NDN网络仿真平台-ndnSIM上进行了实验验证。实验结果表明,与传统的请求端拥塞控制相比,新方法能够提高网络吞吐量、降低丢包率。

关键词: 控制方法;信息中心网络;分析

Abstract

This paper aims to design a congestion control method for Named Data Network (NDN) based on adjusting the interest packet sending window of the requesting side.We first introduce researches on congestion control of NDN, analyze and compare two ideas that do congestion control on requesting side or metric nodes in the network.And then we put forward an end congestion control method based on machine learning traffic prediction, and do simulation experiment on the NDN simulation platform - ndnSIM .Experimental result shows that the proposed method can improve network throughput and reduce packet loss rate compared with traditional requesting side congestion control.

Key words: control method; information center network; analysis

参考文献 References

[1] 雷凯.信息中心网络与命名数据网络[M].北京:北京大学出版社,2015:46.

[2] Sichen Song,Lixia Zhang.Exploring Rate-Based Congestion Control in NDN[C].Paris,France:ICN’21, September22–24,2021:141-143. 

[3] 张敏.Pytorch深度学习实战[M].北京:电子工业出版社,2021:228.

[4] 刘玉年.命名数据网络混合式拥塞控制技术研究[D].北京:北京理工大学,2021.

[5] 黄茹辉.命名数据网络拥塞控制机制研究[D].江苏:江苏大学,2018.

[6] 白治宏,郑浩楠.基于 TCP CUBIC 机制的协助传输数据方案[J].信息与电脑,2022(10):23-25.

[7] Klaus Schneider,Cheng Yi,Beichuan Zhang,Lixia Zhang.A Practical Congestion Control Scheme for Named Data Networking[C].Kyoto,Japan:ACM-ICN’16,September 26-28,2016:21-30

[8] Rozhnova N, Fdida S. An extended hop-by-hop interest shaping mechanism for content-centric networking[C]. 2014 IEEE global communications conference. [S.l.]: IEEE, 2014: 1–7. 

[9] Ben Basat R, Ramanathan S, Li Y, et al. Pint: Probabilistic in-band network telemetry[C]. Pro-ceedings of the Annual conference of the ACM Special InterestGroup on Data Communication on the applications, technologies, architectures, and protocols for computer communication. [S.l.: s.n.],2020: 662–680.

[10] Li Y, Miao R, Liu H H, et al. Hpcc: High precision congestion control[M]. Proceedings of the ACM Special Interest Group on Data Communication. [S.l.: s.n.], 2019: 44–58.