[email protected]

国际计算机科学进展

Advances in International Computer Science

您当前位置:首页 > 精选文章

Advances in International Computer Science. 2022; 2: (3) ; 10.12208/j. aics.20220048 .

Emergency supplies distribution in 5G network environment
5G网络环境下应急物资配送问题

作者: 孟志成 *, 曾俊桦, 陈一帆

广东石油化工学院电子信息工程学院 广东

*通讯作者: 孟志成,单位:广东石油化工学院电子信息工程学院 广东;

引用本文: 孟志成, 曾俊桦, 陈一帆 5G网络环境下应急物资配送问题[J]. 国际计算机科学进展, 2022; 2: (3) : 61-63.
Published: 2022/10/25 17:31:05

摘要

针对单配送车辆模式下14个地点的配送,首先使用Floyd算法计算出每个点距离应急物资集中地点的最短距离及对应的最短路径,其次由于车辆总载重量大于总需求配送量,所以直接结合改进后的遗传算法,得出最优配送方案总里程为582公里,最短配送时间为11.64小时。由于车辆总载重量大于总需求配送量,车辆和无人机仅需进行一次配送即可,在此基础上添加一个数学规划模型,结合遗传算法,以最短配送时间为首要目标与目标函数,得到车辆+无人机最优配送方案总里程为619公里,最短配送时间为6.32小时。

关键词: Floyd算法;数据规划;5G网络;应急物资配送

Abstract

Distribution vehicle mode for single 14 distribution of the location, the first to use Floyd algorithm calculated the distance between each point the location of emergency supplies concentrated corresponding shortest path, shortest distance and secondly because of the gross vehicle weight greater than aggregate demand distribution, so directly in combination with the improved genetic algorithm, it is concluded that the optimal distribution scheme for the total mileage of 582 kilometers, The shortest delivery time is 11.64 hours. Due to gross vehicle load is greater than the total demand distribution, and only a delivery vehicles and unmanned aerial vehicles (UAVS), on the basis of adding a mathematical programming model, combined with the genetic algorithm, in the shortest delivery time for the first target and the objective function, get vehicle + unmanned aerial vehicle (UAV), the optimal distribution scheme total mileage of 619 kilometers, the shortest delivery time is 6.32 hours.

Key words: Floyd algorithm, data planning, 5G network, emergency supplies distribution

参考文献 References

[1] Y. Zhai et al., "5G-Network-Enabled Smart Ambulance: Architecture, Application, and Evaluation," in IEEE Network, vol. 35, no. 1, pp. 190-196, 2021.

[2] Ling Shen, Jian Lu, Ling Deng, Manman Li, "Emergency Resource Location and Allocation in Traffic Contingency Plan for Sports Mega-Event", Advances in Civil Engineering, vol. 2021, pp.12, 2021.

[3] J. Chen, M. Hu, H. Shen, H. Lan and Z. Wu, "Study of Modeling Earthquake Emergency Rescue Material Scheduling Problems by Multi-objective Optimization Algorithms," 2020 2nd International Conference on Industrial Artificial Intelligence (IAI), pp. 1-5, 2020.

[4] 周志进.基于MATLAB的最短路径算法分析[J].科技资讯,2022,20(15):217-219.